Deep learning with R for beginners: design neural network models in R 3.5 using TensorFlow, Keras, and MXNet
This Learning Path is your step-by-step guide to building deep learning models using R's wide range of deep learning libraries and frameworks. Through multiple real-world projects and expert guidance and tips, you'll gain the exact knowledge you need to get started with developing deep mod...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham ; Mumbai
Packt Publishing
2019
|
Schlagworte: | |
Online-Zugang: | FHD01 UBY01 |
Zusammenfassung: | This Learning Path is your step-by-step guide to building deep learning models using R's wide range of deep learning libraries and frameworks. Through multiple real-world projects and expert guidance and tips, you'll gain the exact knowledge you need to get started with developing deep models using R. |
Beschreibung: | 1 Online-Ressource (591 Seiten) |
ISBN: | 9781838647223 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV046704604 | ||
003 | DE-604 | ||
005 | 20211214 | ||
007 | cr|uuu---uuuuu | ||
008 | 200505s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781838647223 |9 978-1-83864-722-3 | ||
035 | |a (OCoLC)1153992522 | ||
035 | |a (DE-599)BVBBV046704604 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-706 | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
100 | 1 | |a Hodnett, Mark |e Verfasser |4 aut | |
245 | 1 | 0 | |a Deep learning with R for beginners |b design neural network models in R 3.5 using TensorFlow, Keras, and MXNet |c Mark Hodnett, Joshua F. Wiley, Yuxi (Hayden) Liu, Pablo Maldonado |
264 | 1 | |a Birmingham ; Mumbai |b Packt Publishing |c 2019 | |
300 | |a 1 Online-Ressource (591 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; What is deep learning?; A conceptual overview of neural networks; Neural networks as an extension of linear regression; Neural networks as a network of memory cells; Deep neural networks; Some common myths about deep learning; Setting up your R environment; Deep learning frameworks for R; MXNet; Keras; Do I need a GPU (and what is it, anyway)?; Setting up reproducible results; Summary; Chapter 2: Training a Prediction Model; Neural networks in R | |
505 | 8 | |a Building neural network modelsGenerating predictions from a neural network; The problem of overfitting data -- the consequences explained; Use case -- building and applying a neural network; Summary; Chapter 3: Deep Learning Fundamentals; Building neural networks from scratch in R; Neural network web application; Neural network code; Back to deep learning; The symbol, X, y, and ctx parameters; The num.round and begin.round parameters; The optimizer parameter; The initializer parameter; The eval.metric and eval.data parameters; The epoch.end.callback parameter; The array.batch.size parameter | |
505 | 8 | |a Using regularization to overcome overfittingL1 penalty; L1 penalty in action; L2 penalty; L2 penalty in action; Weight decay (L2 penalty in neural networks); Ensembles and model-averaging; Use case -- improving out-of-sample model performance using dropout; Summary; Chapter 4: Training Deep Prediction Models; Getting started with deep feedforward neural networks; Activation functions; Introduction to the MXNet deep learning library; Deep learning layers; Building a deep learning model; Use case -- using MXNet for classification and regression; Data download and exploration | |
505 | 8 | |a Preparing the data for our modelsThe binary classification model; The regression model; Improving the binary classification model; The unreasonable effectiveness of data; Summary; Chapter 5: Image Classification Using Convolutional Neural Networks; CNNs; Convolutional layers; Pooling layers; Dropout; Flatten layers, dense layers, and softmax; Image classification using the MXNet library; Base model (no convolutional layers); LeNet; Classification using the fashion MNIST dataset; References/further reading; Summary; Chapter 6: Tuning and Optimizing Models | |
505 | 8 | |a Evaluation metrics and evaluating performanceTypes of evaluation metric; Evaluating performance; Data preparation; Different data distributions; Data partition between training, test, and validation sets; Standardization; Data leakage; Data augmentation; Using data augmentation to increase the training data; Test time augmentation; Using data augmentation in deep learning libraries; Tuning hyperparameters; Grid search; Random search; Use case-using LIME for interpretability; Model interpretability with LIME; Summary; Chapter 7: Natural Language Processing Using Deep Learning | |
520 | |a This Learning Path is your step-by-step guide to building deep learning models using R's wide range of deep learning libraries and frameworks. Through multiple real-world projects and expert guidance and tips, you'll gain the exact knowledge you need to get started with developing deep models using R. | ||
650 | 4 | |a Machine learning | |
650 | 4 | |a R (Computer program language) | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a R (Computer program language) |2 fast | |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Wiley, Joshua F. |e Verfasser |0 (DE-588)108213497X |4 aut | |
700 | 1 | |a Liu, Yuxi |e Verfasser |0 (DE-588)1144655390 |4 aut | |
700 | 1 | |a Maldonado, Pablo |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-83864-270-9 |
912 | |a ZDB-30-PQE |a ZDB-4-NLEBK |a ZDB-5-WPSE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032115077 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=5778833 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2142582 |l UBY01 |p ZDB-4-NLEBK |q UBY01_DDA20 |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181434133381121 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Hodnett, Mark Wiley, Joshua F. Liu, Yuxi Maldonado, Pablo |
author_GND | (DE-588)108213497X (DE-588)1144655390 |
author_facet | Hodnett, Mark Wiley, Joshua F. Liu, Yuxi Maldonado, Pablo |
author_role | aut aut aut aut |
author_sort | Hodnett, Mark |
author_variant | m h mh j f w jf jfw y l yl p m pm |
building | Verbundindex |
bvnumber | BV046704604 |
classification_rvk | ST 250 ST 601 |
collection | ZDB-30-PQE ZDB-4-NLEBK ZDB-5-WPSE |
contents | Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; What is deep learning?; A conceptual overview of neural networks; Neural networks as an extension of linear regression; Neural networks as a network of memory cells; Deep neural networks; Some common myths about deep learning; Setting up your R environment; Deep learning frameworks for R; MXNet; Keras; Do I need a GPU (and what is it, anyway)?; Setting up reproducible results; Summary; Chapter 2: Training a Prediction Model; Neural networks in R Building neural network modelsGenerating predictions from a neural network; The problem of overfitting data -- the consequences explained; Use case -- building and applying a neural network; Summary; Chapter 3: Deep Learning Fundamentals; Building neural networks from scratch in R; Neural network web application; Neural network code; Back to deep learning; The symbol, X, y, and ctx parameters; The num.round and begin.round parameters; The optimizer parameter; The initializer parameter; The eval.metric and eval.data parameters; The epoch.end.callback parameter; The array.batch.size parameter Using regularization to overcome overfittingL1 penalty; L1 penalty in action; L2 penalty; L2 penalty in action; Weight decay (L2 penalty in neural networks); Ensembles and model-averaging; Use case -- improving out-of-sample model performance using dropout; Summary; Chapter 4: Training Deep Prediction Models; Getting started with deep feedforward neural networks; Activation functions; Introduction to the MXNet deep learning library; Deep learning layers; Building a deep learning model; Use case -- using MXNet for classification and regression; Data download and exploration Preparing the data for our modelsThe binary classification model; The regression model; Improving the binary classification model; The unreasonable effectiveness of data; Summary; Chapter 5: Image Classification Using Convolutional Neural Networks; CNNs; Convolutional layers; Pooling layers; Dropout; Flatten layers, dense layers, and softmax; Image classification using the MXNet library; Base model (no convolutional layers); LeNet; Classification using the fashion MNIST dataset; References/further reading; Summary; Chapter 6: Tuning and Optimizing Models Evaluation metrics and evaluating performanceTypes of evaluation metric; Evaluating performance; Data preparation; Different data distributions; Data partition between training, test, and validation sets; Standardization; Data leakage; Data augmentation; Using data augmentation to increase the training data; Test time augmentation; Using data augmentation in deep learning libraries; Tuning hyperparameters; Grid search; Random search; Use case-using LIME for interpretability; Model interpretability with LIME; Summary; Chapter 7: Natural Language Processing Using Deep Learning |
ctrlnum | (OCoLC)1153992522 (DE-599)BVBBV046704604 |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05291nmm a2200529 c 4500</leader><controlfield tag="001">BV046704604</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200505s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838647223</subfield><subfield code="9">978-1-83864-722-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1153992522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046704604</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hodnett, Mark</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning with R for beginners</subfield><subfield code="b">design neural network models in R 3.5 using TensorFlow, Keras, and MXNet</subfield><subfield code="c">Mark Hodnett, Joshua F. Wiley, Yuxi (Hayden) Liu, Pablo Maldonado</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham ; Mumbai</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (591 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; What is deep learning?; A conceptual overview of neural networks; Neural networks as an extension of linear regression; Neural networks as a network of memory cells; Deep neural networks; Some common myths about deep learning; Setting up your R environment; Deep learning frameworks for R; MXNet; Keras; Do I need a GPU (and what is it, anyway)?; Setting up reproducible results; Summary; Chapter 2: Training a Prediction Model; Neural networks in R</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Building neural network modelsGenerating predictions from a neural network; The problem of overfitting data -- the consequences explained; Use case -- building and applying a neural network; Summary; Chapter 3: Deep Learning Fundamentals; Building neural networks from scratch in R; Neural network web application; Neural network code; Back to deep learning; The symbol, X, y, and ctx parameters; The num.round and begin.round parameters; The optimizer parameter; The initializer parameter; The eval.metric and eval.data parameters; The epoch.end.callback parameter; The array.batch.size parameter</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Using regularization to overcome overfittingL1 penalty; L1 penalty in action; L2 penalty; L2 penalty in action; Weight decay (L2 penalty in neural networks); Ensembles and model-averaging; Use case -- improving out-of-sample model performance using dropout; Summary; Chapter 4: Training Deep Prediction Models; Getting started with deep feedforward neural networks; Activation functions; Introduction to the MXNet deep learning library; Deep learning layers; Building a deep learning model; Use case -- using MXNet for classification and regression; Data download and exploration</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Preparing the data for our modelsThe binary classification model; The regression model; Improving the binary classification model; The unreasonable effectiveness of data; Summary; Chapter 5: Image Classification Using Convolutional Neural Networks; CNNs; Convolutional layers; Pooling layers; Dropout; Flatten layers, dense layers, and softmax; Image classification using the MXNet library; Base model (no convolutional layers); LeNet; Classification using the fashion MNIST dataset; References/further reading; Summary; Chapter 6: Tuning and Optimizing Models</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Evaluation metrics and evaluating performanceTypes of evaluation metric; Evaluating performance; Data preparation; Different data distributions; Data partition between training, test, and validation sets; Standardization; Data leakage; Data augmentation; Using data augmentation to increase the training data; Test time augmentation; Using data augmentation in deep learning libraries; Tuning hyperparameters; Grid search; Random search; Use case-using LIME for interpretability; Model interpretability with LIME; Summary; Chapter 7: Natural Language Processing Using Deep Learning</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This Learning Path is your step-by-step guide to building deep learning models using R's wide range of deep learning libraries and frameworks. Through multiple real-world projects and expert guidance and tips, you'll gain the exact knowledge you need to get started with developing deep models using R.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">R (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiley, Joshua F.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108213497X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yuxi</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1144655390</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maldonado, Pablo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-83864-270-9</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-4-NLEBK</subfield><subfield code="a">ZDB-5-WPSE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032115077</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=5778833</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2142582</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="q">UBY01_DDA20</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046704604 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:29:15Z |
indexdate | 2024-07-10T08:51:35Z |
institution | BVB |
isbn | 9781838647223 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032115077 |
oclc_num | 1153992522 |
open_access_boolean | |
owner | DE-1050 DE-706 |
owner_facet | DE-1050 DE-706 |
physical | 1 Online-Ressource (591 Seiten) |
psigel | ZDB-30-PQE ZDB-4-NLEBK ZDB-5-WPSE ZDB-30-PQE FHD01_PQE_Kauf ZDB-4-NLEBK UBY01_DDA20 |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Packt Publishing |
record_format | marc |
spelling | Hodnett, Mark Verfasser aut Deep learning with R for beginners design neural network models in R 3.5 using TensorFlow, Keras, and MXNet Mark Hodnett, Joshua F. Wiley, Yuxi (Hayden) Liu, Pablo Maldonado Birmingham ; Mumbai Packt Publishing 2019 1 Online-Ressource (591 Seiten) txt rdacontent c rdamedia cr rdacarrier Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; What is deep learning?; A conceptual overview of neural networks; Neural networks as an extension of linear regression; Neural networks as a network of memory cells; Deep neural networks; Some common myths about deep learning; Setting up your R environment; Deep learning frameworks for R; MXNet; Keras; Do I need a GPU (and what is it, anyway)?; Setting up reproducible results; Summary; Chapter 2: Training a Prediction Model; Neural networks in R Building neural network modelsGenerating predictions from a neural network; The problem of overfitting data -- the consequences explained; Use case -- building and applying a neural network; Summary; Chapter 3: Deep Learning Fundamentals; Building neural networks from scratch in R; Neural network web application; Neural network code; Back to deep learning; The symbol, X, y, and ctx parameters; The num.round and begin.round parameters; The optimizer parameter; The initializer parameter; The eval.metric and eval.data parameters; The epoch.end.callback parameter; The array.batch.size parameter Using regularization to overcome overfittingL1 penalty; L1 penalty in action; L2 penalty; L2 penalty in action; Weight decay (L2 penalty in neural networks); Ensembles and model-averaging; Use case -- improving out-of-sample model performance using dropout; Summary; Chapter 4: Training Deep Prediction Models; Getting started with deep feedforward neural networks; Activation functions; Introduction to the MXNet deep learning library; Deep learning layers; Building a deep learning model; Use case -- using MXNet for classification and regression; Data download and exploration Preparing the data for our modelsThe binary classification model; The regression model; Improving the binary classification model; The unreasonable effectiveness of data; Summary; Chapter 5: Image Classification Using Convolutional Neural Networks; CNNs; Convolutional layers; Pooling layers; Dropout; Flatten layers, dense layers, and softmax; Image classification using the MXNet library; Base model (no convolutional layers); LeNet; Classification using the fashion MNIST dataset; References/further reading; Summary; Chapter 6: Tuning and Optimizing Models Evaluation metrics and evaluating performanceTypes of evaluation metric; Evaluating performance; Data preparation; Different data distributions; Data partition between training, test, and validation sets; Standardization; Data leakage; Data augmentation; Using data augmentation to increase the training data; Test time augmentation; Using data augmentation in deep learning libraries; Tuning hyperparameters; Grid search; Random search; Use case-using LIME for interpretability; Model interpretability with LIME; Summary; Chapter 7: Natural Language Processing Using Deep Learning This Learning Path is your step-by-step guide to building deep learning models using R's wide range of deep learning libraries and frameworks. Through multiple real-world projects and expert guidance and tips, you'll gain the exact knowledge you need to get started with developing deep models using R. Machine learning R (Computer program language) Machine learning fast R (Computer program language) fast R Programm (DE-588)4705956-4 gnd rswk-swf R Programm (DE-588)4705956-4 s 1\p DE-604 Wiley, Joshua F. Verfasser (DE-588)108213497X aut Liu, Yuxi Verfasser (DE-588)1144655390 aut Maldonado, Pablo Verfasser aut Erscheint auch als Druck-Ausgabe 978-1-83864-270-9 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hodnett, Mark Wiley, Joshua F. Liu, Yuxi Maldonado, Pablo Deep learning with R for beginners design neural network models in R 3.5 using TensorFlow, Keras, and MXNet Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; What is deep learning?; A conceptual overview of neural networks; Neural networks as an extension of linear regression; Neural networks as a network of memory cells; Deep neural networks; Some common myths about deep learning; Setting up your R environment; Deep learning frameworks for R; MXNet; Keras; Do I need a GPU (and what is it, anyway)?; Setting up reproducible results; Summary; Chapter 2: Training a Prediction Model; Neural networks in R Building neural network modelsGenerating predictions from a neural network; The problem of overfitting data -- the consequences explained; Use case -- building and applying a neural network; Summary; Chapter 3: Deep Learning Fundamentals; Building neural networks from scratch in R; Neural network web application; Neural network code; Back to deep learning; The symbol, X, y, and ctx parameters; The num.round and begin.round parameters; The optimizer parameter; The initializer parameter; The eval.metric and eval.data parameters; The epoch.end.callback parameter; The array.batch.size parameter Using regularization to overcome overfittingL1 penalty; L1 penalty in action; L2 penalty; L2 penalty in action; Weight decay (L2 penalty in neural networks); Ensembles and model-averaging; Use case -- improving out-of-sample model performance using dropout; Summary; Chapter 4: Training Deep Prediction Models; Getting started with deep feedforward neural networks; Activation functions; Introduction to the MXNet deep learning library; Deep learning layers; Building a deep learning model; Use case -- using MXNet for classification and regression; Data download and exploration Preparing the data for our modelsThe binary classification model; The regression model; Improving the binary classification model; The unreasonable effectiveness of data; Summary; Chapter 5: Image Classification Using Convolutional Neural Networks; CNNs; Convolutional layers; Pooling layers; Dropout; Flatten layers, dense layers, and softmax; Image classification using the MXNet library; Base model (no convolutional layers); LeNet; Classification using the fashion MNIST dataset; References/further reading; Summary; Chapter 6: Tuning and Optimizing Models Evaluation metrics and evaluating performanceTypes of evaluation metric; Evaluating performance; Data preparation; Different data distributions; Data partition between training, test, and validation sets; Standardization; Data leakage; Data augmentation; Using data augmentation to increase the training data; Test time augmentation; Using data augmentation in deep learning libraries; Tuning hyperparameters; Grid search; Random search; Use case-using LIME for interpretability; Model interpretability with LIME; Summary; Chapter 7: Natural Language Processing Using Deep Learning Machine learning R (Computer program language) Machine learning fast R (Computer program language) fast R Programm (DE-588)4705956-4 gnd |
subject_GND | (DE-588)4705956-4 |
title | Deep learning with R for beginners design neural network models in R 3.5 using TensorFlow, Keras, and MXNet |
title_auth | Deep learning with R for beginners design neural network models in R 3.5 using TensorFlow, Keras, and MXNet |
title_exact_search | Deep learning with R for beginners design neural network models in R 3.5 using TensorFlow, Keras, and MXNet |
title_exact_search_txtP | Deep learning with R for beginners design neural network models in R 3.5 using TensorFlow, Keras, and MXNet |
title_full | Deep learning with R for beginners design neural network models in R 3.5 using TensorFlow, Keras, and MXNet Mark Hodnett, Joshua F. Wiley, Yuxi (Hayden) Liu, Pablo Maldonado |
title_fullStr | Deep learning with R for beginners design neural network models in R 3.5 using TensorFlow, Keras, and MXNet Mark Hodnett, Joshua F. Wiley, Yuxi (Hayden) Liu, Pablo Maldonado |
title_full_unstemmed | Deep learning with R for beginners design neural network models in R 3.5 using TensorFlow, Keras, and MXNet Mark Hodnett, Joshua F. Wiley, Yuxi (Hayden) Liu, Pablo Maldonado |
title_short | Deep learning with R for beginners |
title_sort | deep learning with r for beginners design neural network models in r 3 5 using tensorflow keras and mxnet |
title_sub | design neural network models in R 3.5 using TensorFlow, Keras, and MXNet |
topic | Machine learning R (Computer program language) Machine learning fast R (Computer program language) fast R Programm (DE-588)4705956-4 gnd |
topic_facet | Machine learning R (Computer program language) R Programm |
work_keys_str_mv | AT hodnettmark deeplearningwithrforbeginnersdesignneuralnetworkmodelsinr35usingtensorflowkerasandmxnet AT wileyjoshuaf deeplearningwithrforbeginnersdesignneuralnetworkmodelsinr35usingtensorflowkerasandmxnet AT liuyuxi deeplearningwithrforbeginnersdesignneuralnetworkmodelsinr35usingtensorflowkerasandmxnet AT maldonadopablo deeplearningwithrforbeginnersdesignneuralnetworkmodelsinr35usingtensorflowkerasandmxnet |