Network data mining and analysis:
Introduction to social networks -- Network modeling -- R-energy for evaluating robustness of dynamic networks -- Network linkage across heterogeneous networks -- Quasi-biclique detection from bipartite graphs -- On detecting antagonistic community detection from signed graphs -- Summary
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, NJ
World Scientific Publishing Co. Pte. Ltd
[2019]
|
Schriftenreihe: | East China Normal University scientific reports
8 |
Schlagworte: | |
Online-Zugang: | FWS01 FWS02 TUM01 UBY01 Volltext Access to full text is restricted to subscribers |
Zusammenfassung: | Introduction to social networks -- Network modeling -- R-energy for evaluating robustness of dynamic networks -- Network linkage across heterogeneous networks -- Quasi-biclique detection from bipartite graphs -- On detecting antagonistic community detection from signed graphs -- Summary "Consider an online social networking site with millions of members in which members have the opportunity to befriend one another, send messages to each other, and post content on the site. Facebook, LinkedIn, and Twitter are examples of such sites. To make sense of data from these sites, we resort to social media mining to answer the following questions: 1. What are social communities in bipartite graphs and signed graphs? 2. How robust are the networks? How can we apply the robustness of networks? 3. How can we find identical social users across heterogeneous social networks? Social media shatters the boundaries between the real world and the virtual world. We can now integrate social theories with computational methods to study how individuals interact with each other and how social communities form in bipartite and signed networks. The uniqueness of social media data calls for novel data mining techniques that can effectively handle user generated content with rich social relations. The study and development of these new techniques are under the purview of social media mining, an emerging discipline under the umbrella of data mining. Social Media Mining is the process of representing, analyzing, and extracting actionable patterns from social media data"-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (204 Seiten) |
ISBN: | 9789813274969 |
DOI: | 10.1142/11120 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV046703696 | ||
003 | DE-604 | ||
005 | 20201105 | ||
007 | cr|uuu---uuuuu | ||
008 | 200505s2019 xxu|||| o||u| ||||||eng d | ||
020 | |a 9789813274969 |9 978-981-327-496-9 | ||
024 | 7 | |a 10.1142/11120 |2 doi | |
035 | |a (OCoLC)1154003303 | ||
035 | |a (DE-599)BVBBV046703696 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-863 |a DE-862 |a DE-706 |a DE-91 | ||
050 | 0 | |a QA76.9.D343 | |
082 | 0 | |a 006.3/12 | |
100 | 1 | |a Gao, Ming |d 1980- |e Verfasser |0 (DE-588)1174765445 |4 aut | |
245 | 1 | 0 | |a Network data mining and analysis |c Ming Gao, East China Normal University, China ; Ee-Peng Lim, Singapore Management University, Singapore ; David Lo, Singapore Management University, Singapore |
264 | 1 | |a Singapore ; Hackensack, NJ |b World Scientific Publishing Co. Pte. Ltd |c [2019] | |
300 | |a 1 Online-Ressource (204 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a East China Normal University scientific reports |v 8 | |
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a Introduction to social networks -- Network modeling -- R-energy for evaluating robustness of dynamic networks -- Network linkage across heterogeneous networks -- Quasi-biclique detection from bipartite graphs -- On detecting antagonistic community detection from signed graphs -- Summary | |
520 | 3 | |a "Consider an online social networking site with millions of members in which members have the opportunity to befriend one another, send messages to each other, and post content on the site. Facebook, LinkedIn, and Twitter are examples of such sites. To make sense of data from these sites, we resort to social media mining to answer the following questions: 1. What are social communities in bipartite graphs and signed graphs? 2. How robust are the networks? How can we apply the robustness of networks? 3. How can we find identical social users across heterogeneous social networks? Social media shatters the boundaries between the real world and the virtual world. We can now integrate social theories with computational methods to study how individuals interact with each other and how social communities form in bipartite and signed networks. The uniqueness of social media data calls for novel data mining techniques that can effectively handle user generated content with rich social relations. The study and development of these new techniques are under the purview of social media mining, an emerging discipline under the umbrella of data mining. Social Media Mining is the process of representing, analyzing, and extracting actionable patterns from social media data"-- | |
653 | 0 | |a Data mining | |
653 | 0 | |a Data mining | |
653 | 0 | |a COMPUTERS / General | |
653 | 6 | |a Electronic books | |
700 | 1 | |a Lim, Ee-Peng |e Verfasser |4 aut | |
700 | 1 | |a Lo, David |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-981-327-497-6 |
830 | 0 | |a East China Normal University scientific reports |v 8 |w (DE-604)BV046821394 |9 8 | |
856 | 4 | 0 | |u https://doi.org/10.1142/11120 |x Resolving-System |3 Volltext |
856 | 4 | 0 | |m X:WSP |u http://www.worldscientific.com/worldscibooks/10.1142/11120#t=toc |x Verlag |z Access to full text is restricted to subscribers |
912 | |a ZDB-124-WPC |a ZDB-124-WOP |a ZDB-4-NLEBK | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032114193 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/11120#t=toc |l FWS01 |p ZDB-124-WOP |q FWS_PDA_WOP_Kauf |x Verlag |3 Volltext | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/11120#t=toc |l FWS02 |p ZDB-124-WOP |q FWS_PDA_WOP_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1906855&site=ehost-live |l TUM01 |p ZDB-4-NLEBK |q TUM_Einzelkauf |x Aggregator |3 Volltext | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/11120#t=toc |l UBY01 |p ZDB-124-WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 757028 |
---|---|
_version_ | 1806191158327508992 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Gao, Ming 1980- Lim, Ee-Peng Lo, David |
author_GND | (DE-588)1174765445 |
author_facet | Gao, Ming 1980- Lim, Ee-Peng Lo, David |
author_role | aut aut aut |
author_sort | Gao, Ming 1980- |
author_variant | m g mg e p l epl d l dl |
building | Verbundindex |
bvnumber | BV046703696 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D343 |
callnumber-search | QA76.9.D343 |
callnumber-sort | QA 276.9 D343 |
callnumber-subject | QA - Mathematics |
collection | ZDB-124-WPC ZDB-124-WOP ZDB-4-NLEBK |
ctrlnum | (OCoLC)1154003303 (DE-599)BVBBV046703696 |
dewey-full | 006.3/12 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/12 |
dewey-search | 006.3/12 |
dewey-sort | 16.3 212 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1142/11120 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04007nmm a2200529 cb4500</leader><controlfield tag="001">BV046703696</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201105 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200505s2019 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813274969</subfield><subfield code="9">978-981-327-496-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/11120</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1154003303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046703696</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.9.D343</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/12</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gao, Ming</subfield><subfield code="d">1980-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1174765445</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Network data mining and analysis</subfield><subfield code="c">Ming Gao, East China Normal University, China ; Ee-Peng Lim, Singapore Management University, Singapore ; David Lo, Singapore Management University, Singapore</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore ; Hackensack, NJ</subfield><subfield code="b">World Scientific Publishing Co. Pte. Ltd</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (204 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">East China Normal University scientific reports</subfield><subfield code="v">8</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Introduction to social networks -- Network modeling -- R-energy for evaluating robustness of dynamic networks -- Network linkage across heterogeneous networks -- Quasi-biclique detection from bipartite graphs -- On detecting antagonistic community detection from signed graphs -- Summary</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Consider an online social networking site with millions of members in which members have the opportunity to befriend one another, send messages to each other, and post content on the site. Facebook, LinkedIn, and Twitter are examples of such sites. To make sense of data from these sites, we resort to social media mining to answer the following questions: 1. What are social communities in bipartite graphs and signed graphs? 2. How robust are the networks? How can we apply the robustness of networks? 3. How can we find identical social users across heterogeneous social networks? Social media shatters the boundaries between the real world and the virtual world. We can now integrate social theories with computational methods to study how individuals interact with each other and how social communities form in bipartite and signed networks. The uniqueness of social media data calls for novel data mining techniques that can effectively handle user generated content with rich social relations. The study and development of these new techniques are under the purview of social media mining, an emerging discipline under the umbrella of data mining. Social Media Mining is the process of representing, analyzing, and extracting actionable patterns from social media data"--</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">COMPUTERS / General</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Ee-Peng</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lo, David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-981-327-497-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">East China Normal University scientific reports</subfield><subfield code="v">8</subfield><subfield code="w">(DE-604)BV046821394</subfield><subfield code="9">8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1142/11120</subfield><subfield code="x">Resolving-System</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="m">X:WSP</subfield><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/11120#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">Access to full text is restricted to subscribers</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WPC</subfield><subfield code="a">ZDB-124-WOP</subfield><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032114193</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/11120#t=toc</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FWS_PDA_WOP_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/11120#t=toc</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FWS_PDA_WOP_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1906855&site=ehost-live</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/11120#t=toc</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046703696 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:29:03Z |
indexdate | 2024-08-01T15:15:17Z |
institution | BVB |
isbn | 9789813274969 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032114193 |
oclc_num | 1154003303 |
open_access_boolean | |
owner | DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-706 DE-91 DE-BY-TUM |
owner_facet | DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-706 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (204 Seiten) |
psigel | ZDB-124-WPC ZDB-124-WOP ZDB-4-NLEBK ZDB-124-WOP FWS_PDA_WOP_Kauf ZDB-4-NLEBK TUM_Einzelkauf |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | World Scientific Publishing Co. Pte. Ltd |
record_format | marc |
series | East China Normal University scientific reports |
series2 | East China Normal University scientific reports |
spellingShingle | Gao, Ming 1980- Lim, Ee-Peng Lo, David Network data mining and analysis East China Normal University scientific reports |
title | Network data mining and analysis |
title_auth | Network data mining and analysis |
title_exact_search | Network data mining and analysis |
title_exact_search_txtP | Network data mining and analysis |
title_full | Network data mining and analysis Ming Gao, East China Normal University, China ; Ee-Peng Lim, Singapore Management University, Singapore ; David Lo, Singapore Management University, Singapore |
title_fullStr | Network data mining and analysis Ming Gao, East China Normal University, China ; Ee-Peng Lim, Singapore Management University, Singapore ; David Lo, Singapore Management University, Singapore |
title_full_unstemmed | Network data mining and analysis Ming Gao, East China Normal University, China ; Ee-Peng Lim, Singapore Management University, Singapore ; David Lo, Singapore Management University, Singapore |
title_short | Network data mining and analysis |
title_sort | network data mining and analysis |
url | https://doi.org/10.1142/11120 http://www.worldscientific.com/worldscibooks/10.1142/11120#t=toc |
volume_link | (DE-604)BV046821394 |
work_keys_str_mv | AT gaoming networkdataminingandanalysis AT limeepeng networkdataminingandanalysis AT lodavid networkdataminingandanalysis |