Mathematical interest theory: Third edition
Mathematical Interest Theory provides an introduction to how investments grow over time. This is done in a mathematically precise manner. The emphasis is on practical applications that give the reader a concrete understanding of why the various relationships should be true. Among the modern financia...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
MAA Press, an imprint of the American Mathematical Society
[2019]
|
Ausgabe: | Third edition |
Schriftenreihe: | AMS/MAA textbooks
vol 57 |
Schlagworte: | |
Online-Zugang: | TUM01 |
Zusammenfassung: | Mathematical Interest Theory provides an introduction to how investments grow over time. This is done in a mathematically precise manner. The emphasis is on practical applications that give the reader a concrete understanding of why the various relationships should be true. Among the modern financial topics introduced are: arbitrage, options, futures, and swaps. Mathematical Interest Theory is written for anyone who has a strong high-school algebra background and is interested in being an informed borrower or investor. The book is suitable for a mid-level or upper-level undergraduate course or a beginning graduate course. The content of the book, along with an understanding of probability, will provide a solid foundation for readers embarking on actuarial careers. The text has been suggested by the Society of Actuaries for people preparing for the Financial Mathematics exam. To that end, Mathematical Interest Theory includes more than 260 carefully worked examples. There are over 475 problems, and numerical answers are included in an appendix. A companion student solution manual has detailed solutions to the odd-numbered problems. Most of the examples involve computation, and detailed instruction is provided on how to use the Texas Instruments BA II Plus and BA II Plus Professional calculators to efficiently solve the problems. This Third Edition updates the previous edition to cover the material in the SOA study notes FM-24-17, FM-25-17, and FM-26-17 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource Illustrationen |
ISBN: | 9781470455309 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046689670 | ||
003 | DE-604 | ||
005 | 20210507 | ||
007 | cr|uuu---uuuuu | ||
008 | 200423s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781470455309 |9 978-1-4704-5530-9 | ||
035 | |a (ZDB-30-PQE)EBC6012204 | ||
035 | |a (ZDB-89-EBL)EBL6012204 | ||
035 | |a (ZDB-4-NLEBK)2350809 | ||
035 | |a (OCoLC)1136968438 | ||
035 | |a (DE-599)BVBBV046689670 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 332.801513 | |
084 | |a QC 210 |0 (DE-625)141260: |2 rvk | ||
084 | |a SK 980 |0 (DE-625)143277: |2 rvk | ||
100 | 1 | |a Vaaler, Leslie Jane Federer |e Verfasser |0 (DE-588)132086697 |4 aut | |
245 | 1 | 0 | |a Mathematical interest theory |b Third edition |c Leslie Jane Federer Vaaler, Shinko Kojima Harper, James W. Daniel |
250 | |a Third edition | ||
264 | 1 | |a Providence, Rhode Island |b MAA Press, an imprint of the American Mathematical Society |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a 1 Online-Ressource |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a AMS/MAA textbooks |v vol 57 | |
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a Mathematical Interest Theory provides an introduction to how investments grow over time. This is done in a mathematically precise manner. The emphasis is on practical applications that give the reader a concrete understanding of why the various relationships should be true. Among the modern financial topics introduced are: arbitrage, options, futures, and swaps. Mathematical Interest Theory is written for anyone who has a strong high-school algebra background and is interested in being an informed borrower or investor. The book is suitable for a mid-level or upper-level undergraduate course or a beginning graduate course. The content of the book, along with an understanding of probability, will provide a solid foundation for readers embarking on actuarial careers. The text has been suggested by the Society of Actuaries for people preparing for the Financial Mathematics exam. To that end, Mathematical Interest Theory includes more than 260 carefully worked examples. There are over 475 problems, and numerical answers are included in an appendix. A companion student solution manual has detailed solutions to the odd-numbered problems. Most of the examples involve computation, and detailed instruction is provided on how to use the Texas Instruments BA II Plus and BA II Plus Professional calculators to efficiently solve the problems. This Third Edition updates the previous edition to cover the material in the SOA study notes FM-24-17, FM-25-17, and FM-26-17 | ||
650 | 4 | |a Interest rates-Mathematical models. | |
650 | 4 | |a Interest rate futures-Mathematical models. | |
650 | 4 | |a Risk management-Mathematical models | |
650 | 0 | 7 | |a Wirtschaftsmathematik |0 (DE-588)4066472-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zinstermingeschäft |0 (DE-588)4124494-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Risikomanagement |0 (DE-588)4121590-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zinstheorie |0 (DE-588)4190933-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zinstheorie |0 (DE-588)4190933-1 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Wirtschaftsmathematik |0 (DE-588)4066472-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Zinstermingeschäft |0 (DE-588)4124494-1 |D s |
689 | 2 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 2 | 2 | |a Risikomanagement |0 (DE-588)4121590-4 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Harper, Shinko Kojima |d 1967- |e Verfasser |0 (DE-588)1202996000 |4 aut | |
700 | 1 | |a Daniel, James W. |d 1940- |e Verfasser |0 (DE-588)132086670 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |a Federer, Leslie Jane |t Mathematical Interest Theory : Third Edition |d Providence : American Mathematical Society,c2019 |n Druck-Ausgabe |z 978-1-4704-4393-1 |
830 | 0 | |a AMS/MAA textbooks |v vol 57 |w (DE-604)BV047275716 |9 57 | |
912 | |a ZDB-30-PQE |a ZDB-4-NLEBK | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032100454 | ||
966 | e | |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2350809 |l TUM01 |p ZDB-4-NLEBK |q TUM_PDA_EBSCOBAE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181409582022656 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Vaaler, Leslie Jane Federer Harper, Shinko Kojima 1967- Daniel, James W. 1940- |
author_GND | (DE-588)132086697 (DE-588)1202996000 (DE-588)132086670 |
author_facet | Vaaler, Leslie Jane Federer Harper, Shinko Kojima 1967- Daniel, James W. 1940- |
author_role | aut aut aut |
author_sort | Vaaler, Leslie Jane Federer |
author_variant | l j f v ljf ljfv s k h sk skh j w d jw jwd |
building | Verbundindex |
bvnumber | BV046689670 |
classification_rvk | QC 210 SK 980 |
collection | ZDB-30-PQE ZDB-4-NLEBK |
ctrlnum | (ZDB-30-PQE)EBC6012204 (ZDB-89-EBL)EBL6012204 (ZDB-4-NLEBK)2350809 (OCoLC)1136968438 (DE-599)BVBBV046689670 |
dewey-full | 332.801513 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 332 - Financial economics |
dewey-raw | 332.801513 |
dewey-search | 332.801513 |
dewey-sort | 3332.801513 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
edition | Third edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04329nmm a2200661zcb4500</leader><controlfield tag="001">BV046689670</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210507 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200423s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470455309</subfield><subfield code="9">978-1-4704-5530-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6012204</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6012204</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-NLEBK)2350809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1136968438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046689670</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">332.801513</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QC 210</subfield><subfield code="0">(DE-625)141260:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vaaler, Leslie Jane Federer</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132086697</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical interest theory</subfield><subfield code="b">Third edition</subfield><subfield code="c">Leslie Jane Federer Vaaler, Shinko Kojima Harper, James W. Daniel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">MAA Press, an imprint of the American Mathematical Society</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">AMS/MAA textbooks</subfield><subfield code="v">vol 57</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mathematical Interest Theory provides an introduction to how investments grow over time. This is done in a mathematically precise manner. The emphasis is on practical applications that give the reader a concrete understanding of why the various relationships should be true. Among the modern financial topics introduced are: arbitrage, options, futures, and swaps. Mathematical Interest Theory is written for anyone who has a strong high-school algebra background and is interested in being an informed borrower or investor. The book is suitable for a mid-level or upper-level undergraduate course or a beginning graduate course. The content of the book, along with an understanding of probability, will provide a solid foundation for readers embarking on actuarial careers. The text has been suggested by the Society of Actuaries for people preparing for the Financial Mathematics exam. To that end, Mathematical Interest Theory includes more than 260 carefully worked examples. There are over 475 problems, and numerical answers are included in an appendix. A companion student solution manual has detailed solutions to the odd-numbered problems. Most of the examples involve computation, and detailed instruction is provided on how to use the Texas Instruments BA II Plus and BA II Plus Professional calculators to efficiently solve the problems. This Third Edition updates the previous edition to cover the material in the SOA study notes FM-24-17, FM-25-17, and FM-26-17</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interest rates-Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interest rate futures-Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk management-Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wirtschaftsmathematik</subfield><subfield code="0">(DE-588)4066472-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zinstermingeschäft</subfield><subfield code="0">(DE-588)4124494-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Risikomanagement</subfield><subfield code="0">(DE-588)4121590-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zinstheorie</subfield><subfield code="0">(DE-588)4190933-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zinstheorie</subfield><subfield code="0">(DE-588)4190933-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wirtschaftsmathematik</subfield><subfield code="0">(DE-588)4066472-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Zinstermingeschäft</subfield><subfield code="0">(DE-588)4124494-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Risikomanagement</subfield><subfield code="0">(DE-588)4121590-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harper, Shinko Kojima</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1202996000</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Daniel, James W.</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132086670</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Federer, Leslie Jane</subfield><subfield code="t">Mathematical Interest Theory : Third Edition</subfield><subfield code="d">Providence : American Mathematical Society,c2019</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4704-4393-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">AMS/MAA textbooks</subfield><subfield code="v">vol 57</subfield><subfield code="w">(DE-604)BV047275716</subfield><subfield code="9">57</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032100454</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2350809</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="q">TUM_PDA_EBSCOBAE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046689670 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:24:49Z |
indexdate | 2024-07-10T08:51:12Z |
institution | BVB |
isbn | 9781470455309 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032100454 |
oclc_num | 1136968438 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource Illustrationen |
psigel | ZDB-30-PQE ZDB-4-NLEBK ZDB-4-NLEBK TUM_PDA_EBSCOBAE_Kauf |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | MAA Press, an imprint of the American Mathematical Society |
record_format | marc |
series | AMS/MAA textbooks |
series2 | AMS/MAA textbooks |
spelling | Vaaler, Leslie Jane Federer Verfasser (DE-588)132086697 aut Mathematical interest theory Third edition Leslie Jane Federer Vaaler, Shinko Kojima Harper, James W. Daniel Third edition Providence, Rhode Island MAA Press, an imprint of the American Mathematical Society [2019] © 2019 1 Online-Ressource Illustrationen txt rdacontent c rdamedia cr rdacarrier AMS/MAA textbooks vol 57 Description based on publisher supplied metadata and other sources Mathematical Interest Theory provides an introduction to how investments grow over time. This is done in a mathematically precise manner. The emphasis is on practical applications that give the reader a concrete understanding of why the various relationships should be true. Among the modern financial topics introduced are: arbitrage, options, futures, and swaps. Mathematical Interest Theory is written for anyone who has a strong high-school algebra background and is interested in being an informed borrower or investor. The book is suitable for a mid-level or upper-level undergraduate course or a beginning graduate course. The content of the book, along with an understanding of probability, will provide a solid foundation for readers embarking on actuarial careers. The text has been suggested by the Society of Actuaries for people preparing for the Financial Mathematics exam. To that end, Mathematical Interest Theory includes more than 260 carefully worked examples. There are over 475 problems, and numerical answers are included in an appendix. A companion student solution manual has detailed solutions to the odd-numbered problems. Most of the examples involve computation, and detailed instruction is provided on how to use the Texas Instruments BA II Plus and BA II Plus Professional calculators to efficiently solve the problems. This Third Edition updates the previous edition to cover the material in the SOA study notes FM-24-17, FM-25-17, and FM-26-17 Interest rates-Mathematical models. Interest rate futures-Mathematical models. Risk management-Mathematical models Wirtschaftsmathematik (DE-588)4066472-7 gnd rswk-swf Zinstermingeschäft (DE-588)4124494-1 gnd rswk-swf Risikomanagement (DE-588)4121590-4 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Zinstheorie (DE-588)4190933-1 gnd rswk-swf Zinstheorie (DE-588)4190933-1 s Mathematisches Modell (DE-588)4114528-8 s DE-604 Wirtschaftsmathematik (DE-588)4066472-7 s Zinstermingeschäft (DE-588)4124494-1 s Risikomanagement (DE-588)4121590-4 s Harper, Shinko Kojima 1967- Verfasser (DE-588)1202996000 aut Daniel, James W. 1940- Verfasser (DE-588)132086670 aut Erscheint auch als Federer, Leslie Jane Mathematical Interest Theory : Third Edition Providence : American Mathematical Society,c2019 Druck-Ausgabe 978-1-4704-4393-1 AMS/MAA textbooks vol 57 (DE-604)BV047275716 57 |
spellingShingle | Vaaler, Leslie Jane Federer Harper, Shinko Kojima 1967- Daniel, James W. 1940- Mathematical interest theory Third edition AMS/MAA textbooks Interest rates-Mathematical models. Interest rate futures-Mathematical models. Risk management-Mathematical models Wirtschaftsmathematik (DE-588)4066472-7 gnd Zinstermingeschäft (DE-588)4124494-1 gnd Risikomanagement (DE-588)4121590-4 gnd Mathematisches Modell (DE-588)4114528-8 gnd Zinstheorie (DE-588)4190933-1 gnd |
subject_GND | (DE-588)4066472-7 (DE-588)4124494-1 (DE-588)4121590-4 (DE-588)4114528-8 (DE-588)4190933-1 |
title | Mathematical interest theory Third edition |
title_auth | Mathematical interest theory Third edition |
title_exact_search | Mathematical interest theory Third edition |
title_exact_search_txtP | Mathematical interest theory Third edition |
title_full | Mathematical interest theory Third edition Leslie Jane Federer Vaaler, Shinko Kojima Harper, James W. Daniel |
title_fullStr | Mathematical interest theory Third edition Leslie Jane Federer Vaaler, Shinko Kojima Harper, James W. Daniel |
title_full_unstemmed | Mathematical interest theory Third edition Leslie Jane Federer Vaaler, Shinko Kojima Harper, James W. Daniel |
title_short | Mathematical interest theory |
title_sort | mathematical interest theory third edition |
title_sub | Third edition |
topic | Interest rates-Mathematical models. Interest rate futures-Mathematical models. Risk management-Mathematical models Wirtschaftsmathematik (DE-588)4066472-7 gnd Zinstermingeschäft (DE-588)4124494-1 gnd Risikomanagement (DE-588)4121590-4 gnd Mathematisches Modell (DE-588)4114528-8 gnd Zinstheorie (DE-588)4190933-1 gnd |
topic_facet | Interest rates-Mathematical models. Interest rate futures-Mathematical models. Risk management-Mathematical models Wirtschaftsmathematik Zinstermingeschäft Risikomanagement Mathematisches Modell Zinstheorie |
volume_link | (DE-604)BV047275716 |
work_keys_str_mv | AT vaalerlesliejanefederer mathematicalinteresttheorythirdedition AT harpershinkokojima mathematicalinteresttheorythirdedition AT danieljamesw mathematicalinteresttheorythirdedition |