Quantum Invariants of Knots and 3-Manifolds:
This monograph provides a systematic treatment of topological quantum field theories (TQFT's) in three dimensions, inspired by the discovery of the Jones polynomial of knots, the Witten-Chern-Simons field theory, and the theory of quantum groups. The author, one of the leading experts in the su...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2020]
|
Ausgabe: | Reprint 2020 |
Schriftenreihe: | De Gruyter Studies in Mathematics
18 |
Schlagworte: | |
Online-Zugang: | FAW01 FHA01 FKE01 FLA01 UPA01 FAB01 FCO01 UBM01 UBT01 UBY01 URL des Erstveröffentlichers |
Zusammenfassung: | This monograph provides a systematic treatment of topological quantum field theories (TQFT's) in three dimensions, inspired by the discovery of the Jones polynomial of knots, the Witten-Chern-Simons field theory, and the theory of quantum groups. The author, one of the leading experts in the subject, gives a rigorous and self-contained exposition of new fundamental algebraic and topological concepts that emerged in this theory. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFT's and 2-dimensional modular functors from so-called modular categories. This gives new knot and 3-manifold invariants as well as linear representations of the mapping class groups of surfaces. In Part II the machinery of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFT's constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and Kauffman's skein modules. This book is accessible to graduate students in mathematics and physics with a knowledge of basic algebra and topology. It will be an indispensable source for everyone who wishes to enter the forefront of this rapidly growing and fascinating area at the borderline of mathematics and physics. Most of the results and techniques presented here appear in book form for the first time |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Apr 2020) |
Beschreibung: | 1 online resource (588 pages) Num. figs |
ISBN: | 9783110883275 |
DOI: | 10.1515/9783110883275 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046669360 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200415s2020 |||| o||u| ||||||eng d | ||
020 | |a 9783110883275 |9 978-3-11-088327-5 | ||
024 | 7 | |a 10.1515/9783110883275 |2 doi | |
035 | |a (ZDB-23-DGG)9783110883275 | ||
035 | |a (OCoLC)1151410823 | ||
035 | |a (DE-599)BVBBV046669360 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-1043 |a DE-858 |a DE-19 |a DE-703 |a DE-706 | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
100 | 1 | |a Turaev, Vladimir G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantum Invariants of Knots and 3-Manifolds |c Vladimir G. Turaev |
250 | |a Reprint 2020 | ||
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2020] | |
264 | 4 | |c © 1994 | |
300 | |a 1 online resource (588 pages) |b Num. figs | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter Studies in Mathematics |v 18 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Apr 2020) | ||
520 | |a This monograph provides a systematic treatment of topological quantum field theories (TQFT's) in three dimensions, inspired by the discovery of the Jones polynomial of knots, the Witten-Chern-Simons field theory, and the theory of quantum groups. The author, one of the leading experts in the subject, gives a rigorous and self-contained exposition of new fundamental algebraic and topological concepts that emerged in this theory. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFT's and 2-dimensional modular functors from so-called modular categories. This gives new knot and 3-manifold invariants as well as linear representations of the mapping class groups of surfaces. In Part II the machinery of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFT's constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and Kauffman's skein modules. This book is accessible to graduate students in mathematics and physics with a knowledge of basic algebra and topology. It will be an indispensable source for everyone who wishes to enter the forefront of this rapidly growing and fascinating area at the borderline of mathematics and physics. Most of the results and techniques presented here appear in book form for the first time | ||
546 | |a In English | ||
650 | 7 | |a MATHEMATICS / General |2 bisacsh | |
650 | 0 | 7 | |a Dimension 3 |0 (DE-588)4321722-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Knoten |g Mathematik |0 (DE-588)4164314-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Monoidale Kategorie |0 (DE-588)4170466-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Invariante |0 (DE-588)4310559-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Knotentheorie |0 (DE-588)4164318-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Dimension 3 |0 (DE-588)4321722-9 |D s |
689 | 0 | 2 | |a Knoten |g Mathematik |0 (DE-588)4164314-8 |D s |
689 | 0 | 3 | |a Topologische Invariante |0 (DE-588)4310559-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 1 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 1 | 2 | |a Monoidale Kategorie |0 (DE-588)4170466-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 2 | 1 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |D s |
689 | 2 | 2 | |a Knotentheorie |0 (DE-588)4164318-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783110137040 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110883275 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-GMA |a ZDB-23-GBA | ||
940 | 1 | |q ZDB-23-GMA_1990/1999 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032080363 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1515/9783110883275 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110883275 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110883275 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110883275 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110883275 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110883275 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110883275 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110883275 |l UBM01 |p ZDB-23-GBA |q ZDB-23-GBA_1990/1999 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110883275 |l UBT01 |p ZDB-23-GMA |q ZDB-23-GMA_1990/1999 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110883275 |l UBY01 |p ZDB-23-GBA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181384000962560 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Turaev, Vladimir G. |
author_facet | Turaev, Vladimir G. |
author_role | aut |
author_sort | Turaev, Vladimir G. |
author_variant | v g t vg vgt |
building | Verbundindex |
bvnumber | BV046669360 |
classification_rvk | SK 340 SK 950 UO 4000 |
collection | ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA |
ctrlnum | (ZDB-23-DGG)9783110883275 (OCoLC)1151410823 (DE-599)BVBBV046669360 |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
doi_str_mv | 10.1515/9783110883275 |
edition | Reprint 2020 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05593nmm a2200865zcb4500</leader><controlfield tag="001">BV046669360</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200415s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110883275</subfield><subfield code="9">978-3-11-088327-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110883275</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110883275</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1151410823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046669360</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Turaev, Vladimir G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum Invariants of Knots and 3-Manifolds</subfield><subfield code="c">Vladimir G. Turaev</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Reprint 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (588 pages)</subfield><subfield code="b">Num. figs</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter Studies in Mathematics</subfield><subfield code="v">18</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Apr 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph provides a systematic treatment of topological quantum field theories (TQFT's) in three dimensions, inspired by the discovery of the Jones polynomial of knots, the Witten-Chern-Simons field theory, and the theory of quantum groups. The author, one of the leading experts in the subject, gives a rigorous and self-contained exposition of new fundamental algebraic and topological concepts that emerged in this theory. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFT's and 2-dimensional modular functors from so-called modular categories. This gives new knot and 3-manifold invariants as well as linear representations of the mapping class groups of surfaces. In Part II the machinery of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFT's constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and Kauffman's skein modules. This book is accessible to graduate students in mathematics and physics with a knowledge of basic algebra and topology. It will be an indispensable source for everyone who wishes to enter the forefront of this rapidly growing and fascinating area at the borderline of mathematics and physics. Most of the results and techniques presented here appear in book form for the first time</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monoidale Kategorie</subfield><subfield code="0">(DE-588)4170466-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Invariante</subfield><subfield code="0">(DE-588)4310559-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Topologische Invariante</subfield><subfield code="0">(DE-588)4310559-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Monoidale Kategorie</subfield><subfield code="0">(DE-588)4170466-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783110137040</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110883275</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-GMA</subfield><subfield code="a">ZDB-23-GBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GMA_1990/1999</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032080363</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110883275</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110883275</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110883275</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110883275</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110883275</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110883275</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110883275</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110883275</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-23-GBA</subfield><subfield code="q">ZDB-23-GBA_1990/1999</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110883275</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-23-GMA</subfield><subfield code="q">ZDB-23-GMA_1990/1999</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110883275</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-GBA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046669360 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:21:07Z |
indexdate | 2024-07-10T08:50:48Z |
institution | BVB |
isbn | 9783110883275 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032080363 |
oclc_num | 1151410823 |
open_access_boolean | |
owner | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-1043 DE-858 DE-19 DE-BY-UBM DE-703 DE-706 |
owner_facet | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-1043 DE-858 DE-19 DE-BY-UBM DE-703 DE-706 |
physical | 1 online resource (588 pages) Num. figs |
psigel | ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA ZDB-23-GMA_1990/1999 ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-GBA ZDB-23-GBA_1990/1999 ZDB-23-GMA ZDB-23-GMA_1990/1999 |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter Studies in Mathematics |
spelling | Turaev, Vladimir G. Verfasser aut Quantum Invariants of Knots and 3-Manifolds Vladimir G. Turaev Reprint 2020 Berlin ; Boston De Gruyter [2020] © 1994 1 online resource (588 pages) Num. figs txt rdacontent c rdamedia cr rdacarrier De Gruyter Studies in Mathematics 18 Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Apr 2020) This monograph provides a systematic treatment of topological quantum field theories (TQFT's) in three dimensions, inspired by the discovery of the Jones polynomial of knots, the Witten-Chern-Simons field theory, and the theory of quantum groups. The author, one of the leading experts in the subject, gives a rigorous and self-contained exposition of new fundamental algebraic and topological concepts that emerged in this theory. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFT's and 2-dimensional modular functors from so-called modular categories. This gives new knot and 3-manifold invariants as well as linear representations of the mapping class groups of surfaces. In Part II the machinery of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFT's constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and Kauffman's skein modules. This book is accessible to graduate students in mathematics and physics with a knowledge of basic algebra and topology. It will be an indispensable source for everyone who wishes to enter the forefront of this rapidly growing and fascinating area at the borderline of mathematics and physics. Most of the results and techniques presented here appear in book form for the first time In English MATHEMATICS / General bisacsh Dimension 3 (DE-588)4321722-9 gnd rswk-swf Knoten Mathematik (DE-588)4164314-8 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Monoidale Kategorie (DE-588)4170466-6 gnd rswk-swf Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd rswk-swf Topologische Invariante (DE-588)4310559-2 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Knotentheorie (DE-588)4164318-5 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s Dimension 3 (DE-588)4321722-9 s Knoten Mathematik (DE-588)4164314-8 s Topologische Invariante (DE-588)4310559-2 s 1\p DE-604 Quantenfeldtheorie (DE-588)4047984-5 s Topologie (DE-588)4060425-1 s Monoidale Kategorie (DE-588)4170466-6 s 2\p DE-604 Topologische Mannigfaltigkeit (DE-588)4185712-4 s Knotentheorie (DE-588)4164318-5 s 3\p DE-604 Erscheint auch als Druck-Ausgabe 9783110137040 https://doi.org/10.1515/9783110883275 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Turaev, Vladimir G. Quantum Invariants of Knots and 3-Manifolds MATHEMATICS / General bisacsh Dimension 3 (DE-588)4321722-9 gnd Knoten Mathematik (DE-588)4164314-8 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Monoidale Kategorie (DE-588)4170466-6 gnd Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd Topologische Invariante (DE-588)4310559-2 gnd Topologie (DE-588)4060425-1 gnd Knotentheorie (DE-588)4164318-5 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
subject_GND | (DE-588)4321722-9 (DE-588)4164314-8 (DE-588)4037379-4 (DE-588)4170466-6 (DE-588)4185712-4 (DE-588)4310559-2 (DE-588)4060425-1 (DE-588)4164318-5 (DE-588)4047984-5 |
title | Quantum Invariants of Knots and 3-Manifolds |
title_auth | Quantum Invariants of Knots and 3-Manifolds |
title_exact_search | Quantum Invariants of Knots and 3-Manifolds |
title_exact_search_txtP | Quantum Invariants of Knots and 3-Manifolds |
title_full | Quantum Invariants of Knots and 3-Manifolds Vladimir G. Turaev |
title_fullStr | Quantum Invariants of Knots and 3-Manifolds Vladimir G. Turaev |
title_full_unstemmed | Quantum Invariants of Knots and 3-Manifolds Vladimir G. Turaev |
title_short | Quantum Invariants of Knots and 3-Manifolds |
title_sort | quantum invariants of knots and 3 manifolds |
topic | MATHEMATICS / General bisacsh Dimension 3 (DE-588)4321722-9 gnd Knoten Mathematik (DE-588)4164314-8 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Monoidale Kategorie (DE-588)4170466-6 gnd Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd Topologische Invariante (DE-588)4310559-2 gnd Topologie (DE-588)4060425-1 gnd Knotentheorie (DE-588)4164318-5 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
topic_facet | MATHEMATICS / General Dimension 3 Knoten Mathematik Mannigfaltigkeit Monoidale Kategorie Topologische Mannigfaltigkeit Topologische Invariante Topologie Knotentheorie Quantenfeldtheorie |
url | https://doi.org/10.1515/9783110883275 |
work_keys_str_mv | AT turaevvladimirg quantuminvariantsofknotsand3manifolds |