PyTorch Artificial Intelligence fundamentals: a recipe-based approach to design, build and deploy your own AI models with PyTorch 1.x
In this book, you will start from the basics of tensor manipulation to all the way releasing your deep learning model to production. Using hands-on recipes you will learn to build deep learning applications and visualize the model performance. It teaches you about CNNs, RNNs, GANs and deep reinforce...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham ; Mumbai
Packt
[2020]
|
Schlagworte: | |
Online-Zugang: | FHD01 |
Zusammenfassung: | In this book, you will start from the basics of tensor manipulation to all the way releasing your deep learning model to production. Using hands-on recipes you will learn to build deep learning applications and visualize the model performance. It teaches you about CNNs, RNNs, GANs and deep reinforcement learning with Pytorch |
Beschreibung: | 1 Online-Ressource (vii, 176 Seiten) |
ISBN: | 9781838558291 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV046667206 | ||
003 | DE-604 | ||
005 | 20210316 | ||
007 | cr|uuu---uuuuu | ||
008 | 200413s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781838558291 |9 978-1-83855-829-1 | ||
035 | |a (OCoLC)1150865163 | ||
035 | |a (DE-599)BVBBV046667206 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-83 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Mathew, Jibin |e Verfasser |4 aut | |
245 | 1 | 0 | |a PyTorch Artificial Intelligence fundamentals |b a recipe-based approach to design, build and deploy your own AI models with PyTorch 1.x |c Jibin Mathew |
264 | 1 | |a Birmingham ; Mumbai |b Packt |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a 1 Online-Ressource (vii, 176 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a In this book, you will start from the basics of tensor manipulation to all the way releasing your deep learning model to production. Using hands-on recipes you will learn to build deep learning applications and visualize the model performance. It teaches you about CNNs, RNNs, GANs and deep reinforcement learning with Pytorch | ||
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a PyTorch |0 (DE-588)1202487386 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 1 | |a PyTorch |0 (DE-588)1202487386 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-83855-704-1 |
912 | |a ZDB-4-NLEBK |a ZDB-30-PQE |a ZDB-5-WPSE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032078241 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6126526 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181379915710464 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Mathew, Jibin |
author_facet | Mathew, Jibin |
author_role | aut |
author_sort | Mathew, Jibin |
author_variant | j m jm |
building | Verbundindex |
bvnumber | BV046667206 |
classification_rvk | ST 300 |
collection | ZDB-4-NLEBK ZDB-30-PQE ZDB-5-WPSE |
ctrlnum | (OCoLC)1150865163 (DE-599)BVBBV046667206 |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01794nmm a2200385 c 4500</leader><controlfield tag="001">BV046667206</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210316 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200413s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838558291</subfield><subfield code="9">978-1-83855-829-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1150865163</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046667206</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mathew, Jibin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">PyTorch Artificial Intelligence fundamentals</subfield><subfield code="b">a recipe-based approach to design, build and deploy your own AI models with PyTorch 1.x</subfield><subfield code="c">Jibin Mathew</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham ; Mumbai</subfield><subfield code="b">Packt</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 176 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this book, you will start from the basics of tensor manipulation to all the way releasing your deep learning model to production. Using hands-on recipes you will learn to build deep learning applications and visualize the model performance. It teaches you about CNNs, RNNs, GANs and deep reinforcement learning with Pytorch</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">PyTorch</subfield><subfield code="0">(DE-588)1202487386</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">PyTorch</subfield><subfield code="0">(DE-588)1202487386</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-83855-704-1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-5-WPSE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032078241</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6126526</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046667206 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:20:24Z |
indexdate | 2024-07-10T08:50:44Z |
institution | BVB |
isbn | 9781838558291 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032078241 |
oclc_num | 1150865163 |
open_access_boolean | |
owner | DE-1050 DE-83 |
owner_facet | DE-1050 DE-83 |
physical | 1 Online-Ressource (vii, 176 Seiten) |
psigel | ZDB-4-NLEBK ZDB-30-PQE ZDB-5-WPSE ZDB-30-PQE FHD01_PQE_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Packt |
record_format | marc |
spelling | Mathew, Jibin Verfasser aut PyTorch Artificial Intelligence fundamentals a recipe-based approach to design, build and deploy your own AI models with PyTorch 1.x Jibin Mathew Birmingham ; Mumbai Packt [2020] © 2020 1 Online-Ressource (vii, 176 Seiten) txt rdacontent c rdamedia cr rdacarrier In this book, you will start from the basics of tensor manipulation to all the way releasing your deep learning model to production. Using hands-on recipes you will learn to build deep learning applications and visualize the model performance. It teaches you about CNNs, RNNs, GANs and deep reinforcement learning with Pytorch Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf PyTorch (DE-588)1202487386 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 s PyTorch (DE-588)1202487386 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-83855-704-1 |
spellingShingle | Mathew, Jibin PyTorch Artificial Intelligence fundamentals a recipe-based approach to design, build and deploy your own AI models with PyTorch 1.x Künstliche Intelligenz (DE-588)4033447-8 gnd PyTorch (DE-588)1202487386 gnd |
subject_GND | (DE-588)4033447-8 (DE-588)1202487386 |
title | PyTorch Artificial Intelligence fundamentals a recipe-based approach to design, build and deploy your own AI models with PyTorch 1.x |
title_auth | PyTorch Artificial Intelligence fundamentals a recipe-based approach to design, build and deploy your own AI models with PyTorch 1.x |
title_exact_search | PyTorch Artificial Intelligence fundamentals a recipe-based approach to design, build and deploy your own AI models with PyTorch 1.x |
title_exact_search_txtP | PyTorch Artificial Intelligence fundamentals a recipe-based approach to design, build and deploy your own AI models with PyTorch 1.x |
title_full | PyTorch Artificial Intelligence fundamentals a recipe-based approach to design, build and deploy your own AI models with PyTorch 1.x Jibin Mathew |
title_fullStr | PyTorch Artificial Intelligence fundamentals a recipe-based approach to design, build and deploy your own AI models with PyTorch 1.x Jibin Mathew |
title_full_unstemmed | PyTorch Artificial Intelligence fundamentals a recipe-based approach to design, build and deploy your own AI models with PyTorch 1.x Jibin Mathew |
title_short | PyTorch Artificial Intelligence fundamentals |
title_sort | pytorch artificial intelligence fundamentals a recipe based approach to design build and deploy your own ai models with pytorch 1 x |
title_sub | a recipe-based approach to design, build and deploy your own AI models with PyTorch 1.x |
topic | Künstliche Intelligenz (DE-588)4033447-8 gnd PyTorch (DE-588)1202487386 gnd |
topic_facet | Künstliche Intelligenz PyTorch |
work_keys_str_mv | AT mathewjibin pytorchartificialintelligencefundamentalsarecipebasedapproachtodesignbuildanddeployyourownaimodelswithpytorch1x |