Foundations of stable homotopy theory:
The beginning graduate student in homotopy theory is confronted with a vast literature on spectra that is scattered across books, articles and decades. There is much folklore but very few easy entry points. This comprehensive introduction to stable homotopy theory changes that. It presents the found...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY
Cambridge University Press
2020
|
Schriftenreihe: | Cambridge studies in advanced mathematics
185 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBA01 Volltext |
Zusammenfassung: | The beginning graduate student in homotopy theory is confronted with a vast literature on spectra that is scattered across books, articles and decades. There is much folklore but very few easy entry points. This comprehensive introduction to stable homotopy theory changes that. It presents the foundations of the subject together in one place for the first time, from the motivating phenomena to the modern theory, at a level suitable for those with only a first course in algebraic topology. Starting from stable homotopy groups and (co)homology theories, the authors study the most important categories of spectra and the stable homotopy category, before moving on to computational aspects and more advanced topics such as monoidal structures, localisations and chromatic homotopy theory. The appendix containing essential facts on model categories, the numerous examples and the suggestions for further reading make this a friendly introduction to an often daunting subject |
Beschreibung: | Title from publisher's bibliographic system (viewed on 06 Mar 2020) Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (vi, 423 Seiten) |
ISBN: | 9781108636575 |
DOI: | 10.1017/9781108636575 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046657683 | ||
003 | DE-604 | ||
005 | 20200421 | ||
007 | cr|uuu---uuuuu | ||
008 | 200406s2020 xxk|||| o||u| ||||||eng d | ||
020 | |a 9781108636575 |c Online |9 978-1-108-63657-5 | ||
024 | 7 | |a 10.1017/9781108636575 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108636575 | ||
035 | |a (OCoLC)1150813771 | ||
035 | |a (DE-599)BVBBV046657683 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB | ||
049 | |a DE-384 |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.24 | |
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a Barnes, David |d 1981- |e Verfasser |0 (DE-588)1208718479 |4 aut | |
245 | 1 | 0 | |a Foundations of stable homotopy theory |c David Barnes, Queen's University Belfast, Constanze Roitzheim, University of Kent, Canterbury |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (vi, 423 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge studies in advanced mathematics | |
490 | 0 | |a 185 | |
500 | |a Title from publisher's bibliographic system (viewed on 06 Mar 2020) | ||
500 | |a Includes bibliographical references and index | ||
520 | |a The beginning graduate student in homotopy theory is confronted with a vast literature on spectra that is scattered across books, articles and decades. There is much folklore but very few easy entry points. This comprehensive introduction to stable homotopy theory changes that. It presents the foundations of the subject together in one place for the first time, from the motivating phenomena to the modern theory, at a level suitable for those with only a first course in algebraic topology. Starting from stable homotopy groups and (co)homology theories, the authors study the most important categories of spectra and the stable homotopy category, before moving on to computational aspects and more advanced topics such as monoidal structures, localisations and chromatic homotopy theory. The appendix containing essential facts on model categories, the numerous examples and the suggestions for further reading make this a friendly introduction to an often daunting subject | ||
650 | 4 | |a Homotopy theory | |
650 | 0 | 7 | |a Homotopietheorie |0 (DE-588)4128142-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homotopietheorie |0 (DE-588)4128142-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Roitzheim, Constanze |d 1980- |0 (DE-588)132555840 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-48278-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108636575 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032068822 | ||
966 | e | |u https://doi.org/10.1017/9781108636575 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108636575 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108636575 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181363629228032 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Barnes, David 1981- Roitzheim, Constanze 1980- |
author_GND | (DE-588)1208718479 (DE-588)132555840 |
author_facet | Barnes, David 1981- Roitzheim, Constanze 1980- |
author_role | aut aut |
author_sort | Barnes, David 1981- |
author_variant | d b db c r cr |
building | Verbundindex |
bvnumber | BV046657683 |
classification_rvk | SK 300 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108636575 (OCoLC)1150813771 (DE-599)BVBBV046657683 |
dewey-full | 514/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.24 |
dewey-search | 514/.24 |
dewey-sort | 3514 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781108636575 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03051nmm a2200505zc 4500</leader><controlfield tag="001">BV046657683</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200421 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200406s2020 xxk|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108636575</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-63657-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108636575</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108636575</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1150813771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046657683</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.24</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barnes, David</subfield><subfield code="d">1981-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1208718479</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Foundations of stable homotopy theory</subfield><subfield code="c">David Barnes, Queen's University Belfast, Constanze Roitzheim, University of Kent, Canterbury</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vi, 423 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">185</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 06 Mar 2020)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The beginning graduate student in homotopy theory is confronted with a vast literature on spectra that is scattered across books, articles and decades. There is much folklore but very few easy entry points. This comprehensive introduction to stable homotopy theory changes that. It presents the foundations of the subject together in one place for the first time, from the motivating phenomena to the modern theory, at a level suitable for those with only a first course in algebraic topology. Starting from stable homotopy groups and (co)homology theories, the authors study the most important categories of spectra and the stable homotopy category, before moving on to computational aspects and more advanced topics such as monoidal structures, localisations and chromatic homotopy theory. The appendix containing essential facts on model categories, the numerous examples and the suggestions for further reading make this a friendly introduction to an often daunting subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roitzheim, Constanze</subfield><subfield code="d">1980-</subfield><subfield code="0">(DE-588)132555840</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-48278-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108636575</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032068822</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108636575</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108636575</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108636575</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046657683 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:18:38Z |
indexdate | 2024-07-10T08:50:28Z |
institution | BVB |
isbn | 9781108636575 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032068822 |
oclc_num | 1150813771 |
open_access_boolean | |
owner | DE-384 DE-12 DE-92 |
owner_facet | DE-384 DE-12 DE-92 |
physical | 1 Online-Ressource (vi, 423 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge studies in advanced mathematics 185 |
spelling | Barnes, David 1981- Verfasser (DE-588)1208718479 aut Foundations of stable homotopy theory David Barnes, Queen's University Belfast, Constanze Roitzheim, University of Kent, Canterbury Cambridge, United Kingdom ; New York, NY Cambridge University Press 2020 1 Online-Ressource (vi, 423 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 185 Title from publisher's bibliographic system (viewed on 06 Mar 2020) Includes bibliographical references and index The beginning graduate student in homotopy theory is confronted with a vast literature on spectra that is scattered across books, articles and decades. There is much folklore but very few easy entry points. This comprehensive introduction to stable homotopy theory changes that. It presents the foundations of the subject together in one place for the first time, from the motivating phenomena to the modern theory, at a level suitable for those with only a first course in algebraic topology. Starting from stable homotopy groups and (co)homology theories, the authors study the most important categories of spectra and the stable homotopy category, before moving on to computational aspects and more advanced topics such as monoidal structures, localisations and chromatic homotopy theory. The appendix containing essential facts on model categories, the numerous examples and the suggestions for further reading make this a friendly introduction to an often daunting subject Homotopy theory Homotopietheorie (DE-588)4128142-1 gnd rswk-swf Homotopietheorie (DE-588)4128142-1 s DE-604 Roitzheim, Constanze 1980- (DE-588)132555840 aut Erscheint auch als Druck-Ausgabe 978-1-108-48278-3 https://doi.org/10.1017/9781108636575 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Barnes, David 1981- Roitzheim, Constanze 1980- Foundations of stable homotopy theory Homotopy theory Homotopietheorie (DE-588)4128142-1 gnd |
subject_GND | (DE-588)4128142-1 |
title | Foundations of stable homotopy theory |
title_auth | Foundations of stable homotopy theory |
title_exact_search | Foundations of stable homotopy theory |
title_exact_search_txtP | Foundations of stable homotopy theory |
title_full | Foundations of stable homotopy theory David Barnes, Queen's University Belfast, Constanze Roitzheim, University of Kent, Canterbury |
title_fullStr | Foundations of stable homotopy theory David Barnes, Queen's University Belfast, Constanze Roitzheim, University of Kent, Canterbury |
title_full_unstemmed | Foundations of stable homotopy theory David Barnes, Queen's University Belfast, Constanze Roitzheim, University of Kent, Canterbury |
title_short | Foundations of stable homotopy theory |
title_sort | foundations of stable homotopy theory |
topic | Homotopy theory Homotopietheorie (DE-588)4128142-1 gnd |
topic_facet | Homotopy theory Homotopietheorie |
url | https://doi.org/10.1017/9781108636575 |
work_keys_str_mv | AT barnesdavid foundationsofstablehomotopytheory AT roitzheimconstanze foundationsofstablehomotopytheory |