Spectral analysis for univariate time series:
Spectral analysis is widely used to interpret time series collected in diverse areas. This book covers the statistical theory behind spectral analysis and provides data analysts with the tools needed to transition theory into practice. Actual time series from oceanography, metrology, atmospheric sci...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore
Cambridge University Press
2020
|
Schriftenreihe: | Cambridge series on statistical and probabilistic mathematics
51 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 FUBA1 UBA01 Volltext |
Zusammenfassung: | Spectral analysis is widely used to interpret time series collected in diverse areas. This book covers the statistical theory behind spectral analysis and provides data analysts with the tools needed to transition theory into practice. Actual time series from oceanography, metrology, atmospheric science and other areas are used in running examples throughout, to allow clear comparison of how the various methods address questions of interest. All major nonparametric and parametric spectral analysis techniques are discussed, with emphasis on the multitaper method, both in its original formulation involving Slepian tapers and in a popular alternative using sinusoidal tapers. The authors take a unified approach to quantifying the bandwidth of different nonparametric spectral estimates. An extensive set of exercises allows readers to test their understanding of theory and practical analysis. The time series used as examples and R language code for recreating the analyses of the series are available from the book's website |
Beschreibung: | 1 Online-Ressource (xxiv, 691 Seiten) |
ISBN: | 9781139235723 |
DOI: | 10.1017/9781139235723 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV046657674 | ||
003 | DE-604 | ||
005 | 20200925 | ||
007 | cr|uuu---uuuuu | ||
008 | 200406s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781139235723 |c Online |9 978-1-139-23572-3 | ||
024 | 7 | |a 10.1017/9781139235723 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139235723 | ||
035 | |a (OCoLC)1150812441 | ||
035 | |a (DE-599)BVBBV046657674 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-12 |a DE-92 |a DE-188 |a DE-83 | ||
082 | 0 | |a 519.5/5 | |
084 | |a SK 845 |0 (DE-625)143262: |2 rvk | ||
084 | |a QH 237 |0 (DE-625)141552: |2 rvk | ||
100 | 1 | |a Percival, Donald B. |d 1946- |e Verfasser |0 (DE-588)141004851 |4 aut | |
245 | 1 | 0 | |a Spectral analysis for univariate time series |c Donald B. Percival (University of Washington), Andrew T. Walden (Imperial College of science, technology and medicine) |
264 | 1 | |a Cambridge, United Kingdom ; New York, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (xxiv, 691 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge series on statistical and probabilistic mathematics |v 51 | |
520 | |a Spectral analysis is widely used to interpret time series collected in diverse areas. This book covers the statistical theory behind spectral analysis and provides data analysts with the tools needed to transition theory into practice. Actual time series from oceanography, metrology, atmospheric science and other areas are used in running examples throughout, to allow clear comparison of how the various methods address questions of interest. All major nonparametric and parametric spectral analysis techniques are discussed, with emphasis on the multitaper method, both in its original formulation involving Slepian tapers and in a popular alternative using sinusoidal tapers. The authors take a unified approach to quantifying the bandwidth of different nonparametric spectral estimates. An extensive set of exercises allows readers to test their understanding of theory and practical analysis. The time series used as examples and R language code for recreating the analyses of the series are available from the book's website | ||
650 | 4 | |a Time-series analysis | |
650 | 4 | |a Spectral theory (Mathematics) | |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zeitreihenanalyse |0 (DE-588)4067486-1 |2 gnd |9 rswk-swf |
653 | 0 | |a Time-series analysis | |
653 | 0 | |a Spectral theory (Mathematics) | |
689 | 0 | 0 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | 1 | |a Zeitreihenanalyse |0 (DE-588)4067486-1 |D s |
689 | 0 | 2 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Walden, Andrew T. |d 1954- |e Verfasser |0 (DE-588)141005777 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-10702-814-2 |
830 | 0 | |a Cambridge series on statistical and probabilistic mathematics |v 51 |w (DE-604)BV041460443 |9 51 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781139235723 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO |a ZDB-20-CPA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032068813 | ||
966 | e | |u https://doi.org/10.1017/9781139235723 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139235723 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139235723 |l FUBA1 |p ZDB-20-CPA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139235723 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181363603013632 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Percival, Donald B. 1946- Walden, Andrew T. 1954- |
author_GND | (DE-588)141004851 (DE-588)141005777 |
author_facet | Percival, Donald B. 1946- Walden, Andrew T. 1954- |
author_role | aut aut |
author_sort | Percival, Donald B. 1946- |
author_variant | d b p db dbp a t w at atw |
building | Verbundindex |
bvnumber | BV046657674 |
classification_rvk | SK 845 QH 237 |
collection | ZDB-20-CBO ZDB-20-CPA |
ctrlnum | (ZDB-20-CBO)CR9781139235723 (OCoLC)1150812441 (DE-599)BVBBV046657674 |
dewey-full | 519.5/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/5 |
dewey-search | 519.5/5 |
dewey-sort | 3519.5 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1017/9781139235723 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03689nmm a2200577 cb4500</leader><controlfield tag="001">BV046657674</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200925 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200406s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139235723</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-23572-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781139235723</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139235723</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1150812441</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046657674</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 845</subfield><subfield code="0">(DE-625)143262:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="0">(DE-625)141552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Percival, Donald B.</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141004851</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral analysis for univariate time series</subfield><subfield code="c">Donald B. Percival (University of Washington), Andrew T. Walden (Imperial College of science, technology and medicine)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiv, 691 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge series on statistical and probabilistic mathematics</subfield><subfield code="v">51</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Spectral analysis is widely used to interpret time series collected in diverse areas. This book covers the statistical theory behind spectral analysis and provides data analysts with the tools needed to transition theory into practice. Actual time series from oceanography, metrology, atmospheric science and other areas are used in running examples throughout, to allow clear comparison of how the various methods address questions of interest. All major nonparametric and parametric spectral analysis techniques are discussed, with emphasis on the multitaper method, both in its original formulation involving Slepian tapers and in a popular alternative using sinusoidal tapers. The authors take a unified approach to quantifying the bandwidth of different nonparametric spectral estimates. An extensive set of exercises allows readers to test their understanding of theory and practical analysis. The time series used as examples and R language code for recreating the analyses of the series are available from the book's website</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-series analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral theory (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Time-series analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Spectral theory (Mathematics)</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Walden, Andrew T.</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141005777</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-10702-814-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge series on statistical and probabilistic mathematics</subfield><subfield code="v">51</subfield><subfield code="w">(DE-604)BV041460443</subfield><subfield code="9">51</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781139235723</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield><subfield code="a">ZDB-20-CPA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032068813</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139235723</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139235723</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139235723</subfield><subfield code="l">FUBA1</subfield><subfield code="p">ZDB-20-CPA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139235723</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046657674 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:18:38Z |
indexdate | 2024-07-10T08:50:28Z |
institution | BVB |
isbn | 9781139235723 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032068813 |
oclc_num | 1150812441 |
open_access_boolean | |
owner | DE-384 DE-12 DE-92 DE-188 DE-83 |
owner_facet | DE-384 DE-12 DE-92 DE-188 DE-83 |
physical | 1 Online-Ressource (xxiv, 691 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CPA ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge series on statistical and probabilistic mathematics |
series2 | Cambridge series on statistical and probabilistic mathematics |
spelling | Percival, Donald B. 1946- Verfasser (DE-588)141004851 aut Spectral analysis for univariate time series Donald B. Percival (University of Washington), Andrew T. Walden (Imperial College of science, technology and medicine) Cambridge, United Kingdom ; New York, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore Cambridge University Press 2020 1 Online-Ressource (xxiv, 691 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge series on statistical and probabilistic mathematics 51 Spectral analysis is widely used to interpret time series collected in diverse areas. This book covers the statistical theory behind spectral analysis and provides data analysts with the tools needed to transition theory into practice. Actual time series from oceanography, metrology, atmospheric science and other areas are used in running examples throughout, to allow clear comparison of how the various methods address questions of interest. All major nonparametric and parametric spectral analysis techniques are discussed, with emphasis on the multitaper method, both in its original formulation involving Slepian tapers and in a popular alternative using sinusoidal tapers. The authors take a unified approach to quantifying the bandwidth of different nonparametric spectral estimates. An extensive set of exercises allows readers to test their understanding of theory and practical analysis. The time series used as examples and R language code for recreating the analyses of the series are available from the book's website Time-series analysis Spectral theory (Mathematics) Statistik (DE-588)4056995-0 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Zeitreihenanalyse (DE-588)4067486-1 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 s Zeitreihenanalyse (DE-588)4067486-1 s Statistik (DE-588)4056995-0 s DE-604 Walden, Andrew T. 1954- Verfasser (DE-588)141005777 aut Erscheint auch als Druck-Ausgabe, Hardcover 978-1-10702-814-2 Cambridge series on statistical and probabilistic mathematics 51 (DE-604)BV041460443 51 https://doi.org/10.1017/9781139235723 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Percival, Donald B. 1946- Walden, Andrew T. 1954- Spectral analysis for univariate time series Cambridge series on statistical and probabilistic mathematics Time-series analysis Spectral theory (Mathematics) Statistik (DE-588)4056995-0 gnd Spektraltheorie (DE-588)4116561-5 gnd Zeitreihenanalyse (DE-588)4067486-1 gnd |
subject_GND | (DE-588)4056995-0 (DE-588)4116561-5 (DE-588)4067486-1 |
title | Spectral analysis for univariate time series |
title_auth | Spectral analysis for univariate time series |
title_exact_search | Spectral analysis for univariate time series |
title_exact_search_txtP | Spectral analysis for univariate time series |
title_full | Spectral analysis for univariate time series Donald B. Percival (University of Washington), Andrew T. Walden (Imperial College of science, technology and medicine) |
title_fullStr | Spectral analysis for univariate time series Donald B. Percival (University of Washington), Andrew T. Walden (Imperial College of science, technology and medicine) |
title_full_unstemmed | Spectral analysis for univariate time series Donald B. Percival (University of Washington), Andrew T. Walden (Imperial College of science, technology and medicine) |
title_short | Spectral analysis for univariate time series |
title_sort | spectral analysis for univariate time series |
topic | Time-series analysis Spectral theory (Mathematics) Statistik (DE-588)4056995-0 gnd Spektraltheorie (DE-588)4116561-5 gnd Zeitreihenanalyse (DE-588)4067486-1 gnd |
topic_facet | Time-series analysis Spectral theory (Mathematics) Statistik Spektraltheorie Zeitreihenanalyse |
url | https://doi.org/10.1017/9781139235723 |
volume_link | (DE-604)BV041460443 |
work_keys_str_mv | AT percivaldonaldb spectralanalysisforunivariatetimeseries AT waldenandrewt spectralanalysisforunivariatetimeseries |