Differential topology and geometry with applications to physics:
Differential geometry has encountered numerous applications in physics. More and more physical concepts can be understood as a direct consequence of geometric principles. The mathematical structure of Maxwell's electrodynamics, of the general theory of relativity, of string theory, and of gauge...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Bristol, UK
IOP Publishing
[2018]
|
Ausgabe: | Version: 20181201 |
Schriftenreihe: | IOP expanding physics
|
Schlagworte: | |
Online-Zugang: | UBR01 URL des Erstveröffentlichers |
Zusammenfassung: | Differential geometry has encountered numerous applications in physics. More and more physical concepts can be understood as a direct consequence of geometric principles. The mathematical structure of Maxwell's electrodynamics, of the general theory of relativity, of string theory, and of gauge theories, to name but a few, are of a geometric nature. All of these disciplines require a curved space for the description of a system, and we require a mathematical formalism that can handle the dynamics in such spaces if we wish to go beyond a simple and superficial discussion of physical relationships. This formalism is precisely differential geometry. Even areas like thermodynamics and fluid mechanics greatly benefit from a differential geometric treatment. Not only in physics, but in important branches of mathematics has differential geometry effected important changes. Aimed at graduate students and requiring only linear algebra and differential and integral calculus, this book presents, in a concise and direct manner, the appropriate mathematical formalism and fundamentals of differential topology and differential geometry together with essential applications in many branches of physics |
Beschreibung: | Includes bibliographical references |
Beschreibung: | 1 Online-Ressource (verschiedene Seitenzählung) Illustrationen |
ISBN: | 9780750320726 9780750320719 |
DOI: | 10.1088/2053-2563/aadf65 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046649832 | ||
003 | DE-604 | ||
005 | 20200402 | ||
007 | cr|uuu---uuuuu | ||
008 | 200401s2018 |||| o||u| ||||||eng d | ||
020 | |a 9780750320726 |c OnlineAusgabe, ebook |9 978-0-7503-2072-6 | ||
020 | |a 9780750320719 |c OnlineAusgabe, mobi |9 978-0-7503-2071-9 | ||
024 | 7 | |a 10.1088/2053-2563/aadf65 |2 doi | |
035 | |a (OCoLC)1129928190 | ||
035 | |a (DE-599)BVBBV046649832 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 | ||
084 | |a 530 |2 sdnb | ||
100 | 1 | |a Nahmad-Achar, Eduardo |e Verfasser |0 (DE-588)1175124176 |4 aut | |
245 | 1 | 0 | |a Differential topology and geometry with applications to physics |c Eduardo Nahmad-Achar, National Autonomous University of Mexico, Mexico City, Mexico |
250 | |a Version: 20181201 | ||
264 | 1 | |a Bristol, UK |b IOP Publishing |c [2018] | |
300 | |a 1 Online-Ressource (verschiedene Seitenzählung) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a IOP expanding physics | |
500 | |a Includes bibliographical references | ||
505 | 8 | |a 1. Synopsis of general relativity -- 2. Curves and surfaces in E3 -- 3. Elements of topology -- 4. Differentiable manifolds -- 5. Tangent vectors and tangent spaces -- 6. Tensor algebra -- 7. Tensor fields and commutators -- 8. Differential forms and exterior calculus -- 9. Maps between manifolds -- 10. Integration on manifolds -- 11. Integral curves and Lie derivatives -- 12. Linear connections -- 13. Geodesics -- 14. Torsion and curvature -- 15. Pseudo-Riemannian metric -- 16. Newtonian space-time and thermodynamics -- 17. Special relativity, electrodynamics, and the Poincar e group -- 18. General relativity -- 19. Gravitational radiation -- 20. Further reading | |
520 | |a Differential geometry has encountered numerous applications in physics. More and more physical concepts can be understood as a direct consequence of geometric principles. The mathematical structure of Maxwell's electrodynamics, of the general theory of relativity, of string theory, and of gauge theories, to name but a few, are of a geometric nature. All of these disciplines require a curved space for the description of a system, and we require a mathematical formalism that can handle the dynamics in such spaces if we wish to go beyond a simple and superficial discussion of physical relationships. This formalism is precisely differential geometry. Even areas like thermodynamics and fluid mechanics greatly benefit from a differential geometric treatment. Not only in physics, but in important branches of mathematics has differential geometry effected important changes. Aimed at graduate students and requiring only linear algebra and differential and integral calculus, this book presents, in a concise and direct manner, the appropriate mathematical formalism and fundamentals of differential topology and differential geometry together with essential applications in many branches of physics | ||
650 | 4 | |a SCIENCE / Physics / Mathematical & Computational / bisacsh | |
650 | 4 | |a Geometry, Differential | |
650 | 4 | |a Topology | |
650 | 4 | |a Mathematical physics | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-7503-2070-2 |
856 | 4 | 0 | |u https://doi.org/10.1088/2053-2563/aadf65 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-135-IEP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032061060 | ||
966 | e | |u https://iopscience.iop.org/book/978-0-7503-2072-6 |l UBR01 |p ZDB-135-IEP |q UBR_Paketkauf 2020 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181350797803520 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Nahmad-Achar, Eduardo |
author_GND | (DE-588)1175124176 |
author_facet | Nahmad-Achar, Eduardo |
author_role | aut |
author_sort | Nahmad-Achar, Eduardo |
author_variant | e n a ena |
building | Verbundindex |
bvnumber | BV046649832 |
collection | ZDB-135-IEP |
contents | 1. Synopsis of general relativity -- 2. Curves and surfaces in E3 -- 3. Elements of topology -- 4. Differentiable manifolds -- 5. Tangent vectors and tangent spaces -- 6. Tensor algebra -- 7. Tensor fields and commutators -- 8. Differential forms and exterior calculus -- 9. Maps between manifolds -- 10. Integration on manifolds -- 11. Integral curves and Lie derivatives -- 12. Linear connections -- 13. Geodesics -- 14. Torsion and curvature -- 15. Pseudo-Riemannian metric -- 16. Newtonian space-time and thermodynamics -- 17. Special relativity, electrodynamics, and the Poincar e group -- 18. General relativity -- 19. Gravitational radiation -- 20. Further reading |
ctrlnum | (OCoLC)1129928190 (DE-599)BVBBV046649832 |
discipline | Physik |
discipline_str_mv | Physik |
doi_str_mv | 10.1088/2053-2563/aadf65 |
edition | Version: 20181201 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03591nmm a2200445zc 4500</leader><controlfield tag="001">BV046649832</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200402 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200401s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780750320726</subfield><subfield code="c">OnlineAusgabe, ebook</subfield><subfield code="9">978-0-7503-2072-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780750320719</subfield><subfield code="c">OnlineAusgabe, mobi</subfield><subfield code="9">978-0-7503-2071-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1088/2053-2563/aadf65</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1129928190</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046649832</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nahmad-Achar, Eduardo</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1175124176</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential topology and geometry with applications to physics</subfield><subfield code="c">Eduardo Nahmad-Achar, National Autonomous University of Mexico, Mexico City, Mexico</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Version: 20181201</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bristol, UK</subfield><subfield code="b">IOP Publishing</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (verschiedene Seitenzählung)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IOP expanding physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Synopsis of general relativity -- 2. Curves and surfaces in E3 -- 3. Elements of topology -- 4. Differentiable manifolds -- 5. Tangent vectors and tangent spaces -- 6. Tensor algebra -- 7. Tensor fields and commutators -- 8. Differential forms and exterior calculus -- 9. Maps between manifolds -- 10. Integration on manifolds -- 11. Integral curves and Lie derivatives -- 12. Linear connections -- 13. Geodesics -- 14. Torsion and curvature -- 15. Pseudo-Riemannian metric -- 16. Newtonian space-time and thermodynamics -- 17. Special relativity, electrodynamics, and the Poincar e group -- 18. General relativity -- 19. Gravitational radiation -- 20. Further reading</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Differential geometry has encountered numerous applications in physics. More and more physical concepts can be understood as a direct consequence of geometric principles. The mathematical structure of Maxwell's electrodynamics, of the general theory of relativity, of string theory, and of gauge theories, to name but a few, are of a geometric nature. All of these disciplines require a curved space for the description of a system, and we require a mathematical formalism that can handle the dynamics in such spaces if we wish to go beyond a simple and superficial discussion of physical relationships. This formalism is precisely differential geometry. Even areas like thermodynamics and fluid mechanics greatly benefit from a differential geometric treatment. Not only in physics, but in important branches of mathematics has differential geometry effected important changes. Aimed at graduate students and requiring only linear algebra and differential and integral calculus, this book presents, in a concise and direct manner, the appropriate mathematical formalism and fundamentals of differential topology and differential geometry together with essential applications in many branches of physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SCIENCE / Physics / Mathematical & Computational / bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-7503-2070-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1088/2053-2563/aadf65</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-135-IEP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032061060</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://iopscience.iop.org/book/978-0-7503-2072-6</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-135-IEP</subfield><subfield code="q">UBR_Paketkauf 2020</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046649832 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:16:09Z |
indexdate | 2024-07-10T08:50:16Z |
institution | BVB |
isbn | 9780750320726 9780750320719 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032061060 |
oclc_num | 1129928190 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (verschiedene Seitenzählung) Illustrationen |
psigel | ZDB-135-IEP ZDB-135-IEP UBR_Paketkauf 2020 |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | IOP Publishing |
record_format | marc |
series2 | IOP expanding physics |
spelling | Nahmad-Achar, Eduardo Verfasser (DE-588)1175124176 aut Differential topology and geometry with applications to physics Eduardo Nahmad-Achar, National Autonomous University of Mexico, Mexico City, Mexico Version: 20181201 Bristol, UK IOP Publishing [2018] 1 Online-Ressource (verschiedene Seitenzählung) Illustrationen txt rdacontent c rdamedia cr rdacarrier IOP expanding physics Includes bibliographical references 1. Synopsis of general relativity -- 2. Curves and surfaces in E3 -- 3. Elements of topology -- 4. Differentiable manifolds -- 5. Tangent vectors and tangent spaces -- 6. Tensor algebra -- 7. Tensor fields and commutators -- 8. Differential forms and exterior calculus -- 9. Maps between manifolds -- 10. Integration on manifolds -- 11. Integral curves and Lie derivatives -- 12. Linear connections -- 13. Geodesics -- 14. Torsion and curvature -- 15. Pseudo-Riemannian metric -- 16. Newtonian space-time and thermodynamics -- 17. Special relativity, electrodynamics, and the Poincar e group -- 18. General relativity -- 19. Gravitational radiation -- 20. Further reading Differential geometry has encountered numerous applications in physics. More and more physical concepts can be understood as a direct consequence of geometric principles. The mathematical structure of Maxwell's electrodynamics, of the general theory of relativity, of string theory, and of gauge theories, to name but a few, are of a geometric nature. All of these disciplines require a curved space for the description of a system, and we require a mathematical formalism that can handle the dynamics in such spaces if we wish to go beyond a simple and superficial discussion of physical relationships. This formalism is precisely differential geometry. Even areas like thermodynamics and fluid mechanics greatly benefit from a differential geometric treatment. Not only in physics, but in important branches of mathematics has differential geometry effected important changes. Aimed at graduate students and requiring only linear algebra and differential and integral calculus, this book presents, in a concise and direct manner, the appropriate mathematical formalism and fundamentals of differential topology and differential geometry together with essential applications in many branches of physics SCIENCE / Physics / Mathematical & Computational / bisacsh Geometry, Differential Topology Mathematical physics Erscheint auch als Druck-Ausgabe 978-0-7503-2070-2 https://doi.org/10.1088/2053-2563/aadf65 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Nahmad-Achar, Eduardo Differential topology and geometry with applications to physics 1. Synopsis of general relativity -- 2. Curves and surfaces in E3 -- 3. Elements of topology -- 4. Differentiable manifolds -- 5. Tangent vectors and tangent spaces -- 6. Tensor algebra -- 7. Tensor fields and commutators -- 8. Differential forms and exterior calculus -- 9. Maps between manifolds -- 10. Integration on manifolds -- 11. Integral curves and Lie derivatives -- 12. Linear connections -- 13. Geodesics -- 14. Torsion and curvature -- 15. Pseudo-Riemannian metric -- 16. Newtonian space-time and thermodynamics -- 17. Special relativity, electrodynamics, and the Poincar e group -- 18. General relativity -- 19. Gravitational radiation -- 20. Further reading SCIENCE / Physics / Mathematical & Computational / bisacsh Geometry, Differential Topology Mathematical physics |
title | Differential topology and geometry with applications to physics |
title_auth | Differential topology and geometry with applications to physics |
title_exact_search | Differential topology and geometry with applications to physics |
title_exact_search_txtP | Differential topology and geometry with applications to physics |
title_full | Differential topology and geometry with applications to physics Eduardo Nahmad-Achar, National Autonomous University of Mexico, Mexico City, Mexico |
title_fullStr | Differential topology and geometry with applications to physics Eduardo Nahmad-Achar, National Autonomous University of Mexico, Mexico City, Mexico |
title_full_unstemmed | Differential topology and geometry with applications to physics Eduardo Nahmad-Achar, National Autonomous University of Mexico, Mexico City, Mexico |
title_short | Differential topology and geometry with applications to physics |
title_sort | differential topology and geometry with applications to physics |
topic | SCIENCE / Physics / Mathematical & Computational / bisacsh Geometry, Differential Topology Mathematical physics |
topic_facet | SCIENCE / Physics / Mathematical & Computational / bisacsh Geometry, Differential Topology Mathematical physics |
url | https://doi.org/10.1088/2053-2563/aadf65 |
work_keys_str_mv | AT nahmadachareduardo differentialtopologyandgeometrywithapplicationstophysics |