Machine learning for tomographic imaging:
The area of machine learning, especially deep learning, has exploded in recent years, producing advances in everything from speech recognition and gaming to drug discovery. Tomographic imaging is another major area that is being transformed by machine learning, and its potential to revolutionise med...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Bristol, UK
IOP Publishing
[2020]
|
Schriftenreihe: | IOP ebooks
IPEM-IOP series in physics and engineering in medicine and biology |
Schlagworte: | |
Online-Zugang: | UBR01 UER01 Volltext |
Zusammenfassung: | The area of machine learning, especially deep learning, has exploded in recent years, producing advances in everything from speech recognition and gaming to drug discovery. Tomographic imaging is another major area that is being transformed by machine learning, and its potential to revolutionise medical imaging is highly significant. Written by active researchers in the field, Machine Learning for Tomographic Imaging presents a unified overview of deep-learning-based tomographic imaging. Key concepts, including classic reconstruction ideas and human vision inspired insights, are introduced as a foundation for a thorough examination of artificial neural networks and deep tomographic reconstruction. X-ray CT and MRI reconstruction methods are covered in detail, and other medical imaging applications are discussed as well. An engaging and accessible style makes this book an ideal introduction for those in applied disciplines, as well as those in more theoretical disciplines who wish to learn about application contexts. Hands-on projects are also suggested, and links to open source software, working datasets, and network models are included. Part of Series in Physics and Engineering in Medicine and Biology |
Beschreibung: | 1 Online-Ressource (xxx, 371 Seiten) Illustrationen, Diagramme |
ISBN: | 9780750322164 9780750322157 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046648286 | ||
003 | DE-604 | ||
005 | 20220503 | ||
007 | cr|uuu---uuuuu | ||
008 | 200331s2020 |||| o||u| ||||||eng d | ||
020 | |a 9780750322164 |c OnlineAusgabe |9 978-0-7503-2216-4 | ||
020 | |a 9780750322157 |c OnlineAusgabe, MOBI |9 978-0-7503-2215-7 | ||
024 | 7 | |a 10.1088/978-0-7503-2216-4 |2 doi | |
035 | |a (OCoLC)1148151465 | ||
035 | |a (DE-599)BVBBV046648286 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-29 | ||
100 | 1 | |a Wang, Ge |e Verfasser |0 (DE-588)1207337781 |4 aut | |
245 | 1 | 0 | |a Machine learning for tomographic imaging |c Ge Wang (Rensselaer Polytechnic Institute), Yi Zhang (Sichuan University), Xiaojing Ye (Georgia State University), Xuanqin Mou (Xi’an Jiaotong University) |
264 | 1 | |a Bristol, UK |b IOP Publishing |c [2020] | |
300 | |a 1 Online-Ressource (xxx, 371 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a IOP ebooks | |
490 | 0 | |a IPEM-IOP series in physics and engineering in medicine and biology | |
520 | |a The area of machine learning, especially deep learning, has exploded in recent years, producing advances in everything from speech recognition and gaming to drug discovery. Tomographic imaging is another major area that is being transformed by machine learning, and its potential to revolutionise medical imaging is highly significant. Written by active researchers in the field, Machine Learning for Tomographic Imaging presents a unified overview of deep-learning-based tomographic imaging. Key concepts, including classic reconstruction ideas and human vision inspired insights, are introduced as a foundation for a thorough examination of artificial neural networks and deep tomographic reconstruction. X-ray CT and MRI reconstruction methods are covered in detail, and other medical imaging applications are discussed as well. An engaging and accessible style makes this book an ideal introduction for those in applied disciplines, as well as those in more theoretical disciplines who wish to learn about application contexts. Hands-on projects are also suggested, and links to open source software, working datasets, and network models are included. Part of Series in Physics and Engineering in Medicine and Biology | ||
650 | 4 | |a Medical imaging / bicssc | |
650 | 4 | |a TECHNOLOGY & ENGINEERING / Imaging Systems / bisacsh | |
650 | 4 | |a Tomography | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Artificial intelligence / Medical applications | |
700 | 1 | |a Zhang, Yi |e Verfasser |0 (DE-588)120733832X |4 aut | |
700 | 1 | |a Ye, Xiaojing |e Verfasser |0 (DE-588)1207338605 |4 aut | |
700 | 1 | |a Mou, Xuanqin |e Verfasser |0 (DE-588)1207338885 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-7503-2214-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-7503-2217-1 |
856 | 4 | 0 | |u https://iopscience.iop.org/book/978-0-7503-2216-4 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-135-IAL |a ZDB-135-IAL | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032059543 | ||
966 | e | |u https://iopscience.iop.org/book/978-0-7503-2216-4 |l UBR01 |p ZDB-135-IAL |q UBR_Paketkauf 2020 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1088/978-0-7503-2216-4 |l UER01 |p ZDB-135-IAL |q UER_Einzelkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181348012785664 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Wang, Ge Zhang, Yi Ye, Xiaojing Mou, Xuanqin |
author_GND | (DE-588)1207337781 (DE-588)120733832X (DE-588)1207338605 (DE-588)1207338885 |
author_facet | Wang, Ge Zhang, Yi Ye, Xiaojing Mou, Xuanqin |
author_role | aut aut aut aut |
author_sort | Wang, Ge |
author_variant | g w gw y z yz x y xy x m xm |
building | Verbundindex |
bvnumber | BV046648286 |
collection | ZDB-135-IAL |
ctrlnum | (OCoLC)1148151465 (DE-599)BVBBV046648286 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03370nmm a2200481zc 4500</leader><controlfield tag="001">BV046648286</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220503 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200331s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780750322164</subfield><subfield code="c">OnlineAusgabe</subfield><subfield code="9">978-0-7503-2216-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780750322157</subfield><subfield code="c">OnlineAusgabe, MOBI</subfield><subfield code="9">978-0-7503-2215-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1088/978-0-7503-2216-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1148151465</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046648286</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Ge</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1207337781</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning for tomographic imaging</subfield><subfield code="c">Ge Wang (Rensselaer Polytechnic Institute), Yi Zhang (Sichuan University), Xiaojing Ye (Georgia State University), Xuanqin Mou (Xi’an Jiaotong University)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bristol, UK</subfield><subfield code="b">IOP Publishing</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxx, 371 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IOP ebooks</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IPEM-IOP series in physics and engineering in medicine and biology</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The area of machine learning, especially deep learning, has exploded in recent years, producing advances in everything from speech recognition and gaming to drug discovery. Tomographic imaging is another major area that is being transformed by machine learning, and its potential to revolutionise medical imaging is highly significant. Written by active researchers in the field, Machine Learning for Tomographic Imaging presents a unified overview of deep-learning-based tomographic imaging. Key concepts, including classic reconstruction ideas and human vision inspired insights, are introduced as a foundation for a thorough examination of artificial neural networks and deep tomographic reconstruction. X-ray CT and MRI reconstruction methods are covered in detail, and other medical imaging applications are discussed as well. An engaging and accessible style makes this book an ideal introduction for those in applied disciplines, as well as those in more theoretical disciplines who wish to learn about application contexts. Hands-on projects are also suggested, and links to open source software, working datasets, and network models are included. Part of Series in Physics and Engineering in Medicine and Biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical imaging / bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TECHNOLOGY & ENGINEERING / Imaging Systems / bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence / Medical applications</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yi</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120733832X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ye, Xiaojing</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1207338605</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mou, Xuanqin</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1207338885</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-7503-2214-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-7503-2217-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://iopscience.iop.org/book/978-0-7503-2216-4</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-135-IAL</subfield><subfield code="a">ZDB-135-IAL</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032059543</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://iopscience.iop.org/book/978-0-7503-2216-4</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-135-IAL</subfield><subfield code="q">UBR_Paketkauf 2020</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1088/978-0-7503-2216-4</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-135-IAL</subfield><subfield code="q">UER_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046648286 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:15:40Z |
indexdate | 2024-07-10T08:50:13Z |
institution | BVB |
isbn | 9780750322164 9780750322157 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032059543 |
oclc_num | 1148151465 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-29 |
owner_facet | DE-355 DE-BY-UBR DE-29 |
physical | 1 Online-Ressource (xxx, 371 Seiten) Illustrationen, Diagramme |
psigel | ZDB-135-IAL ZDB-135-IAL UBR_Paketkauf 2020 ZDB-135-IAL UER_Einzelkauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | IOP Publishing |
record_format | marc |
series2 | IOP ebooks IPEM-IOP series in physics and engineering in medicine and biology |
spelling | Wang, Ge Verfasser (DE-588)1207337781 aut Machine learning for tomographic imaging Ge Wang (Rensselaer Polytechnic Institute), Yi Zhang (Sichuan University), Xiaojing Ye (Georgia State University), Xuanqin Mou (Xi’an Jiaotong University) Bristol, UK IOP Publishing [2020] 1 Online-Ressource (xxx, 371 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier IOP ebooks IPEM-IOP series in physics and engineering in medicine and biology The area of machine learning, especially deep learning, has exploded in recent years, producing advances in everything from speech recognition and gaming to drug discovery. Tomographic imaging is another major area that is being transformed by machine learning, and its potential to revolutionise medical imaging is highly significant. Written by active researchers in the field, Machine Learning for Tomographic Imaging presents a unified overview of deep-learning-based tomographic imaging. Key concepts, including classic reconstruction ideas and human vision inspired insights, are introduced as a foundation for a thorough examination of artificial neural networks and deep tomographic reconstruction. X-ray CT and MRI reconstruction methods are covered in detail, and other medical imaging applications are discussed as well. An engaging and accessible style makes this book an ideal introduction for those in applied disciplines, as well as those in more theoretical disciplines who wish to learn about application contexts. Hands-on projects are also suggested, and links to open source software, working datasets, and network models are included. Part of Series in Physics and Engineering in Medicine and Biology Medical imaging / bicssc TECHNOLOGY & ENGINEERING / Imaging Systems / bisacsh Tomography Machine learning Artificial intelligence / Medical applications Zhang, Yi Verfasser (DE-588)120733832X aut Ye, Xiaojing Verfasser (DE-588)1207338605 aut Mou, Xuanqin Verfasser (DE-588)1207338885 aut Erscheint auch als Druck-Ausgabe 978-0-7503-2214-0 Erscheint auch als Druck-Ausgabe 978-0-7503-2217-1 https://iopscience.iop.org/book/978-0-7503-2216-4 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Wang, Ge Zhang, Yi Ye, Xiaojing Mou, Xuanqin Machine learning for tomographic imaging Medical imaging / bicssc TECHNOLOGY & ENGINEERING / Imaging Systems / bisacsh Tomography Machine learning Artificial intelligence / Medical applications |
title | Machine learning for tomographic imaging |
title_auth | Machine learning for tomographic imaging |
title_exact_search | Machine learning for tomographic imaging |
title_exact_search_txtP | Machine learning for tomographic imaging |
title_full | Machine learning for tomographic imaging Ge Wang (Rensselaer Polytechnic Institute), Yi Zhang (Sichuan University), Xiaojing Ye (Georgia State University), Xuanqin Mou (Xi’an Jiaotong University) |
title_fullStr | Machine learning for tomographic imaging Ge Wang (Rensselaer Polytechnic Institute), Yi Zhang (Sichuan University), Xiaojing Ye (Georgia State University), Xuanqin Mou (Xi’an Jiaotong University) |
title_full_unstemmed | Machine learning for tomographic imaging Ge Wang (Rensselaer Polytechnic Institute), Yi Zhang (Sichuan University), Xiaojing Ye (Georgia State University), Xuanqin Mou (Xi’an Jiaotong University) |
title_short | Machine learning for tomographic imaging |
title_sort | machine learning for tomographic imaging |
topic | Medical imaging / bicssc TECHNOLOGY & ENGINEERING / Imaging Systems / bisacsh Tomography Machine learning Artificial intelligence / Medical applications |
topic_facet | Medical imaging / bicssc TECHNOLOGY & ENGINEERING / Imaging Systems / bisacsh Tomography Machine learning Artificial intelligence / Medical applications |
url | https://iopscience.iop.org/book/978-0-7503-2216-4 |
work_keys_str_mv | AT wangge machinelearningfortomographicimaging AT zhangyi machinelearningfortomographicimaging AT yexiaojing machinelearningfortomographicimaging AT mouxuanqin machinelearningfortomographicimaging |