Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation, and Enabling Design of Experiments
Since mathematical models express our understanding of how nature behaves, we use them to validate our understanding of the fundamentals about systems (which could be processes, equipment, procedures, devices, or products). Also, when validated, the model is useful for engineering applications relat...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, N.Y.
The American Society of Mechanical Engineers
[2016]
|
Schriftenreihe: | Wiley-ASME Press series
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Since mathematical models express our understanding of how nature behaves, we use them to validate our understanding of the fundamentals about systems (which could be processes, equipment, procedures, devices, or products). Also, when validated, the model is useful for engineering applications related to diagnosis, design, and optimization. First, we postulate a mechanism, then derive a model grounded in that mechanistic understanding. If the model does not fit the data, our understanding of the mechanism was wrong or incomplete. Patterns in the residuals can guide model improvement. Alternately, when the model fits the data, our understanding is sufficient and confidently functional for engineering applications. This book details methods of nonlinear regression, computational algorithms, model validation, interpretation of residuals, and useful experimental design. The focus is on practical applications, with relevant methods supported by fundamental analysis. This book will assist either the academic or industrial practitioner to properly classify the system, choose between the various available modeling options and regression objectives, design experiments to obtain data capturing critical system behaviors, fit the model parameters based on that data, and statistically characterize the resulting model. The author has used the material in the undergraduate unit operations lab course and in advanced control applications |
Beschreibung: | Includes bibliographical references and index 1 Introductory Concepts -- 2 Model Types -- 3 Propagation of Uncertainty -- 4 Essential Probability and Statistics -- 5 Simulation -- 6 Steady and Transient State Detection -- 7 Regression Target - Objective Function -- 8 Constraints -- 9 The Distortion of Linearizing Transforms -- 10 Optimization Algorithms -- 11 Multiple Optima -- 12 Regression Convergence Criteria -- 13 Model Design - Desired and Undesired Model Characteristics and Effects -- 14 Data Pre- and Post-processing -- 15 Incremental Model Adjustment -- 16 Model and Experimental Validation -- 17 Model Prediction Uncertainty -- 18 Design of Experiments for Model Development and Validation -- 19 Utility versus Perfection -- 20 Troubleshooting -- 21 Case Studies. - System requirements: Adobe Acrobat Reader. - Mode of access: Internet via World Wide Web |
Beschreibung: | 1 online resource (400 Seiten) illustrations |
ISBN: | 9781118597958 1118597958 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046644083 | ||
003 | DE-604 | ||
005 | 20201021 | ||
007 | cr|uuu---uuuuu | ||
008 | 200327s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781118597958 |9 978-1-118-59795-8 | ||
020 | |a 1118597958 |9 1-118-59795-8 | ||
024 | 7 | |a 10.1115/1.861NONQ |2 doi | |
035 | |a (ZDB-240-ASM)1011151861NONQ | ||
035 | |a (OCoLC)1148090629 | ||
035 | |a (DE-599)BVBBV046644083 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 620.001/519536 | |
084 | |a ZG 9142 |0 (DE-625)159633: |2 rvk | ||
100 | 1 | |a Rhinehart, R. Russell |d 1946- |4 aut | |
245 | 1 | 0 | |a Nonlinear Regression Modeling for Engineering Applications |b Modeling, Model Validation, and Enabling Design of Experiments |c R Russell Rhinehart |
246 | 1 | 3 | |a Nonlinear Regression Modeling for Engineering Applications, Modeling, Model Validation, and Enabling Design of Experiments |
264 | 1 | |a New York, N.Y. |b The American Society of Mechanical Engineers |c [2016] | |
300 | |a 1 online resource (400 Seiten) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Wiley-ASME Press series | |
500 | |a Includes bibliographical references and index | ||
500 | |a 1 Introductory Concepts -- 2 Model Types -- 3 Propagation of Uncertainty -- 4 Essential Probability and Statistics -- 5 Simulation -- 6 Steady and Transient State Detection -- 7 Regression Target - Objective Function -- 8 Constraints -- 9 The Distortion of Linearizing Transforms -- 10 Optimization Algorithms -- 11 Multiple Optima -- 12 Regression Convergence Criteria -- 13 Model Design - Desired and Undesired Model Characteristics and Effects -- 14 Data Pre- and Post-processing -- 15 Incremental Model Adjustment -- 16 Model and Experimental Validation -- 17 Model Prediction Uncertainty -- 18 Design of Experiments for Model Development and Validation -- 19 Utility versus Perfection -- 20 Troubleshooting -- 21 Case Studies. - System requirements: Adobe Acrobat Reader. - Mode of access: Internet via World Wide Web | ||
520 | |a Since mathematical models express our understanding of how nature behaves, we use them to validate our understanding of the fundamentals about systems (which could be processes, equipment, procedures, devices, or products). Also, when validated, the model is useful for engineering applications related to diagnosis, design, and optimization. First, we postulate a mechanism, then derive a model grounded in that mechanistic understanding. If the model does not fit the data, our understanding of the mechanism was wrong or incomplete. Patterns in the residuals can guide model improvement. Alternately, when the model fits the data, our understanding is sufficient and confidently functional for engineering applications. This book details methods of nonlinear regression, computational algorithms, model validation, interpretation of residuals, and useful experimental design. The focus is on practical applications, with relevant methods supported by fundamental analysis. This book will assist either the academic or industrial practitioner to properly classify the system, choose between the various available modeling options and regression objectives, design experiments to obtain data capturing critical system behaviors, fit the model parameters based on that data, and statistically characterize the resulting model. The author has used the material in the undergraduate unit operations lab course and in advanced control applications | ||
650 | 4 | |a TECHNOLOGY & ENGINEERING / Engineering (General) / bisach | |
650 | 4 | |a TECHNOLOGY & ENGINEERING / Reference / bisach | |
650 | 4 | |a Engineering / Mathematical models | |
650 | 4 | |a Regression analysis / Mathematical models | |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Modellierung |0 (DE-588)7651795-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ingenieurwissenschaften |0 (DE-588)4137304-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Regression |0 (DE-588)4251077-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares Regressionsmodell |0 (DE-588)4251078-8 |2 gnd |9 rswk-swf |
653 | |a Electronic books | ||
689 | 0 | 0 | |a Nichtlineares Regressionsmodell |0 (DE-588)4251078-8 |D s |
689 | 0 | 1 | |a Mathematische Modellierung |0 (DE-588)7651795-0 |D s |
689 | 0 | 2 | |a Ingenieurwissenschaften |0 (DE-588)4137304-2 |D s |
689 | 0 | 3 | |a Nichtlineare Regression |0 (DE-588)4251077-6 |D s |
689 | 0 | 4 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a The American Society of Mechanical Engineers |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781118597965 |
856 | 4 | 0 | |u https://asmedigitalcollection.asme.org/ebooks/book/52/Nonlinear-Regression-Modeling-for-Engineering |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-240-ASM | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032055391 |
Datensatz im Suchindex
_version_ | 1804181340581527552 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Rhinehart, R. Russell 1946- |
author_facet | Rhinehart, R. Russell 1946- |
author_role | aut |
author_sort | Rhinehart, R. Russell 1946- |
author_variant | r r r rr rrr |
building | Verbundindex |
bvnumber | BV046644083 |
classification_rvk | ZG 9142 |
collection | ZDB-240-ASM |
ctrlnum | (ZDB-240-ASM)1011151861NONQ (OCoLC)1148090629 (DE-599)BVBBV046644083 |
dewey-full | 620.001/519536 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.001/519536 |
dewey-search | 620.001/519536 |
dewey-sort | 3620.001 6519536 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Technik |
discipline_str_mv | Technik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04933nmm a2200613zc 4500</leader><controlfield tag="001">BV046644083</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201021 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200327s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118597958</subfield><subfield code="9">978-1-118-59795-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1118597958</subfield><subfield code="9">1-118-59795-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1115/1.861NONQ</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-240-ASM)1011151861NONQ</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1148090629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046644083</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.001/519536</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZG 9142</subfield><subfield code="0">(DE-625)159633:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rhinehart, R. Russell</subfield><subfield code="d">1946-</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Regression Modeling for Engineering Applications</subfield><subfield code="b">Modeling, Model Validation, and Enabling Design of Experiments</subfield><subfield code="c">R Russell Rhinehart</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Nonlinear Regression Modeling for Engineering Applications, Modeling, Model Validation, and Enabling Design of Experiments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, N.Y.</subfield><subfield code="b">The American Society of Mechanical Engineers</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (400 Seiten)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley-ASME Press series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1 Introductory Concepts -- 2 Model Types -- 3 Propagation of Uncertainty -- 4 Essential Probability and Statistics -- 5 Simulation -- 6 Steady and Transient State Detection -- 7 Regression Target - Objective Function -- 8 Constraints -- 9 The Distortion of Linearizing Transforms -- 10 Optimization Algorithms -- 11 Multiple Optima -- 12 Regression Convergence Criteria -- 13 Model Design - Desired and Undesired Model Characteristics and Effects -- 14 Data Pre- and Post-processing -- 15 Incremental Model Adjustment -- 16 Model and Experimental Validation -- 17 Model Prediction Uncertainty -- 18 Design of Experiments for Model Development and Validation -- 19 Utility versus Perfection -- 20 Troubleshooting -- 21 Case Studies. - System requirements: Adobe Acrobat Reader. - Mode of access: Internet via World Wide Web</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since mathematical models express our understanding of how nature behaves, we use them to validate our understanding of the fundamentals about systems (which could be processes, equipment, procedures, devices, or products). Also, when validated, the model is useful for engineering applications related to diagnosis, design, and optimization. First, we postulate a mechanism, then derive a model grounded in that mechanistic understanding. If the model does not fit the data, our understanding of the mechanism was wrong or incomplete. Patterns in the residuals can guide model improvement. Alternately, when the model fits the data, our understanding is sufficient and confidently functional for engineering applications. This book details methods of nonlinear regression, computational algorithms, model validation, interpretation of residuals, and useful experimental design. The focus is on practical applications, with relevant methods supported by fundamental analysis. This book will assist either the academic or industrial practitioner to properly classify the system, choose between the various available modeling options and regression objectives, design experiments to obtain data capturing critical system behaviors, fit the model parameters based on that data, and statistically characterize the resulting model. The author has used the material in the undergraduate unit operations lab course and in advanced control applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TECHNOLOGY & ENGINEERING / Engineering (General) / bisach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TECHNOLOGY & ENGINEERING / Reference / bisach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression analysis / Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Modellierung</subfield><subfield code="0">(DE-588)7651795-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Regression</subfield><subfield code="0">(DE-588)4251077-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares Regressionsmodell</subfield><subfield code="0">(DE-588)4251078-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineares Regressionsmodell</subfield><subfield code="0">(DE-588)4251078-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Modellierung</subfield><subfield code="0">(DE-588)7651795-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Nichtlineare Regression</subfield><subfield code="0">(DE-588)4251077-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">The American Society of Mechanical Engineers</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781118597965</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://asmedigitalcollection.asme.org/ebooks/book/52/Nonlinear-Regression-Modeling-for-Engineering</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-240-ASM</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032055391</subfield></datafield></record></collection> |
id | DE-604.BV046644083 |
illustrated | Illustrated |
index_date | 2024-07-03T14:14:56Z |
indexdate | 2024-07-10T08:50:06Z |
institution | BVB |
isbn | 9781118597958 1118597958 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032055391 |
oclc_num | 1148090629 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource (400 Seiten) illustrations |
psigel | ZDB-240-ASM |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | The American Society of Mechanical Engineers |
record_format | marc |
series2 | Wiley-ASME Press series |
spelling | Rhinehart, R. Russell 1946- aut Nonlinear Regression Modeling for Engineering Applications Modeling, Model Validation, and Enabling Design of Experiments R Russell Rhinehart Nonlinear Regression Modeling for Engineering Applications, Modeling, Model Validation, and Enabling Design of Experiments New York, N.Y. The American Society of Mechanical Engineers [2016] 1 online resource (400 Seiten) illustrations txt rdacontent c rdamedia cr rdacarrier Wiley-ASME Press series Includes bibliographical references and index 1 Introductory Concepts -- 2 Model Types -- 3 Propagation of Uncertainty -- 4 Essential Probability and Statistics -- 5 Simulation -- 6 Steady and Transient State Detection -- 7 Regression Target - Objective Function -- 8 Constraints -- 9 The Distortion of Linearizing Transforms -- 10 Optimization Algorithms -- 11 Multiple Optima -- 12 Regression Convergence Criteria -- 13 Model Design - Desired and Undesired Model Characteristics and Effects -- 14 Data Pre- and Post-processing -- 15 Incremental Model Adjustment -- 16 Model and Experimental Validation -- 17 Model Prediction Uncertainty -- 18 Design of Experiments for Model Development and Validation -- 19 Utility versus Perfection -- 20 Troubleshooting -- 21 Case Studies. - System requirements: Adobe Acrobat Reader. - Mode of access: Internet via World Wide Web Since mathematical models express our understanding of how nature behaves, we use them to validate our understanding of the fundamentals about systems (which could be processes, equipment, procedures, devices, or products). Also, when validated, the model is useful for engineering applications related to diagnosis, design, and optimization. First, we postulate a mechanism, then derive a model grounded in that mechanistic understanding. If the model does not fit the data, our understanding of the mechanism was wrong or incomplete. Patterns in the residuals can guide model improvement. Alternately, when the model fits the data, our understanding is sufficient and confidently functional for engineering applications. This book details methods of nonlinear regression, computational algorithms, model validation, interpretation of residuals, and useful experimental design. The focus is on practical applications, with relevant methods supported by fundamental analysis. This book will assist either the academic or industrial practitioner to properly classify the system, choose between the various available modeling options and regression objectives, design experiments to obtain data capturing critical system behaviors, fit the model parameters based on that data, and statistically characterize the resulting model. The author has used the material in the undergraduate unit operations lab course and in advanced control applications TECHNOLOGY & ENGINEERING / Engineering (General) / bisach TECHNOLOGY & ENGINEERING / Reference / bisach Engineering / Mathematical models Regression analysis / Mathematical models Datenanalyse (DE-588)4123037-1 gnd rswk-swf Mathematische Modellierung (DE-588)7651795-0 gnd rswk-swf Ingenieurwissenschaften (DE-588)4137304-2 gnd rswk-swf Nichtlineare Regression (DE-588)4251077-6 gnd rswk-swf Nichtlineares Regressionsmodell (DE-588)4251078-8 gnd rswk-swf Electronic books Nichtlineares Regressionsmodell (DE-588)4251078-8 s Mathematische Modellierung (DE-588)7651795-0 s Ingenieurwissenschaften (DE-588)4137304-2 s Nichtlineare Regression (DE-588)4251077-6 s Datenanalyse (DE-588)4123037-1 s DE-604 The American Society of Mechanical Engineers Sonstige oth Erscheint auch als Druck-Ausgabe 9781118597965 https://asmedigitalcollection.asme.org/ebooks/book/52/Nonlinear-Regression-Modeling-for-Engineering Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Rhinehart, R. Russell 1946- Nonlinear Regression Modeling for Engineering Applications Modeling, Model Validation, and Enabling Design of Experiments TECHNOLOGY & ENGINEERING / Engineering (General) / bisach TECHNOLOGY & ENGINEERING / Reference / bisach Engineering / Mathematical models Regression analysis / Mathematical models Datenanalyse (DE-588)4123037-1 gnd Mathematische Modellierung (DE-588)7651795-0 gnd Ingenieurwissenschaften (DE-588)4137304-2 gnd Nichtlineare Regression (DE-588)4251077-6 gnd Nichtlineares Regressionsmodell (DE-588)4251078-8 gnd |
subject_GND | (DE-588)4123037-1 (DE-588)7651795-0 (DE-588)4137304-2 (DE-588)4251077-6 (DE-588)4251078-8 |
title | Nonlinear Regression Modeling for Engineering Applications Modeling, Model Validation, and Enabling Design of Experiments |
title_alt | Nonlinear Regression Modeling for Engineering Applications, Modeling, Model Validation, and Enabling Design of Experiments |
title_auth | Nonlinear Regression Modeling for Engineering Applications Modeling, Model Validation, and Enabling Design of Experiments |
title_exact_search | Nonlinear Regression Modeling for Engineering Applications Modeling, Model Validation, and Enabling Design of Experiments |
title_exact_search_txtP | Nonlinear Regression Modeling for Engineering Applications Modeling, Model Validation, and Enabling Design of Experiments |
title_full | Nonlinear Regression Modeling for Engineering Applications Modeling, Model Validation, and Enabling Design of Experiments R Russell Rhinehart |
title_fullStr | Nonlinear Regression Modeling for Engineering Applications Modeling, Model Validation, and Enabling Design of Experiments R Russell Rhinehart |
title_full_unstemmed | Nonlinear Regression Modeling for Engineering Applications Modeling, Model Validation, and Enabling Design of Experiments R Russell Rhinehart |
title_short | Nonlinear Regression Modeling for Engineering Applications |
title_sort | nonlinear regression modeling for engineering applications modeling model validation and enabling design of experiments |
title_sub | Modeling, Model Validation, and Enabling Design of Experiments |
topic | TECHNOLOGY & ENGINEERING / Engineering (General) / bisach TECHNOLOGY & ENGINEERING / Reference / bisach Engineering / Mathematical models Regression analysis / Mathematical models Datenanalyse (DE-588)4123037-1 gnd Mathematische Modellierung (DE-588)7651795-0 gnd Ingenieurwissenschaften (DE-588)4137304-2 gnd Nichtlineare Regression (DE-588)4251077-6 gnd Nichtlineares Regressionsmodell (DE-588)4251078-8 gnd |
topic_facet | TECHNOLOGY & ENGINEERING / Engineering (General) / bisach TECHNOLOGY & ENGINEERING / Reference / bisach Engineering / Mathematical models Regression analysis / Mathematical models Datenanalyse Mathematische Modellierung Ingenieurwissenschaften Nichtlineare Regression Nichtlineares Regressionsmodell |
url | https://asmedigitalcollection.asme.org/ebooks/book/52/Nonlinear-Regression-Modeling-for-Engineering |
work_keys_str_mv | AT rhinehartrrussell nonlinearregressionmodelingforengineeringapplicationsmodelingmodelvalidationandenablingdesignofexperiments AT theamericansocietyofmechanicalengineers nonlinearregressionmodelingforengineeringapplicationsmodelingmodelvalidationandenablingdesignofexperiments |