Engineering optimization: applications, methods and analysis
Optimization is an inherent human tendency that gained new life after the advent of calculus; now, as the world grows increasingly reliant on complex systems, optimization has become both more important and more challenging than ever before. Engineering Optimization provides a practically-focused in...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, N.Y.
The American Society of Mechanical Engineers
[2018]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Optimization is an inherent human tendency that gained new life after the advent of calculus; now, as the world grows increasingly reliant on complex systems, optimization has become both more important and more challenging than ever before. Engineering Optimization provides a practically-focused introduction to modern engineering optimization best practices, covering fundamental analytical and numerical techniques throughout each stage of the optimization process. Although essential algorithms are explained in detail, the focus lies more in the human function: how to create an appropriate objective function, choose decision variables, identify and incorporate constraints, define convergence, and other critical issues that define the success or failure of an optimization project. Examples, exercises, and homework throughout reinforce the author's "do, not study" approach to learning, underscoring the application-oriented discussion that provides a deep, generic understanding of the optimization process that can be applied to any field. Providing excellent reference for students or professionals, Engineering Optimization: Describes and develops a variety of algorithms, including gradient based (such as Newton's, and Levenberg-Marquardt), direct search (such as Hooke-Jeeves, Leapfrogging, and Particle Swarm), along with surrogate functions for surface characterization Provides guidance on optimizer choice by application, and explains how to determine appropriate optimizer parameter values Details current best practices for critical stages of specifying an optimization procedure, including decision variables, defining constraints, and relationship modeling Provides access to software and Visual Basic macros for Excel on the companion website, along with solutions to examples presented in the book Clear explanations, explicit equation derivations, and practical examples make this book ideal for use as part of a class or self-study, assuming a basic understanding of statistics, calculus, computer programming, |
Beschreibung: | Includes bibliographical references and index Front Matter -- 1 Optimization: Introduction and Concepts -- 2 Optimization Application Diversity and Complexity -- 3 Validation: Knowing That the Answer Is Right -- 4 Univariate (Single DV) Search Techniques -- 5 Path Analysis -- 6 Stopping and Convergence Criteria: 1-D Applications -- 7 Multidimension Application Introduction and the Gradient -- 8 Elementary Gradient-Based Optimizers: CSLS and ISD -- 9 Second-Order Model-Based Optimizers: SQ and NR -- 10 Gradient-Based Optimizer Solutions: LM, RLM, CG, BFGS, RG, and GRG -- 11 Direct Search Techniques -- 12 Linear Programming -- 13 Dynamic Programming -- 14 Genetic Algorithms and Evolutionary Computation -- 15 Intuitive Optimization -- 16 Surface Analysis II -- 17 Convergence Criteria 2: N-D Applications -- 18 Enhancements to Optimizers -- 19 Scaled Variables and Dimensional Consistency -- 20 Economic Optimization -- 21 Multiple OF and Constraint Applications -- 22 Constraints -- 23 Multiple Optima -- 24 Stochastic Objective Functions -- 25 Effects of Uncertainty -- 26 Optimization of Probable Outcomes and Distribution Characteristics -- 27 Discrete and Integer Variables -- 28 Class Variables -- 29 Regression -- 30 Perspective -- 31 Response Surface Aberrations -- 32 Identifying the Models, OF, DV, Convergence Criteria, and Constraints -- 33 Evaluating Optimizers -- 34 Troubleshooting Optimizers -- 35 Analysis of Leapfrogging -- 36 Case Study 1: Economic Optimization of a Pipe System -- 37 Case Study 2: Queuing Study -- 38 Case Study 3: Retirement Study -- 39 Case Study 4: A Goddard Rocket Study -- 40 Case Study 5: Reservoir -- 41 Case Study 6: Area Coverage -- 42 Case Study 7: Approximating Series Solution to an ODE -- 43 Case Study 8: Horizontal Tank Vapor-Liquid Separator -- 44 Case Study 9: In Vitro Fertilization -- 45 Case Study 10: Data Reconciliation -- Back Matter. - System requirements: Adobe Acrobat Reader. - Mode of access: Internet via World Wide Web |
Beschreibung: | 1 online resource (770 Seiten) illustrations |
ISBN: | 9781118936320 1118936329 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046644082 | ||
003 | DE-604 | ||
005 | 20201105 | ||
007 | cr|uuu---uuuuu | ||
008 | 200327s2018 |||| o||u| ||||||eng d | ||
020 | |a 9781118936320 |9 978-1-118-93632-0 | ||
020 | |a 1118936329 |9 1-118-93632-9 | ||
024 | 7 | |a 10.1115/1.861OPT |2 doi | |
035 | |a (ZDB-240-ASM)1011151861OPT | ||
035 | |a (OCoLC)1148071285 | ||
035 | |a (DE-599)BVBBV046644082 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 620.001/5196 | |
084 | |a QH 420 |0 (DE-625)141574: |2 rvk | ||
100 | 1 | |a Rhinehart, R. Russell |d 1946- |4 aut | |
245 | 1 | 0 | |a Engineering optimization |b applications, methods and analysis |c R. Russell Rhinehart |
264 | 1 | |a New York, N.Y. |b The American Society of Mechanical Engineers |c [2018] | |
300 | |a 1 online resource (770 Seiten) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Front Matter -- 1 Optimization: Introduction and Concepts -- 2 Optimization Application Diversity and Complexity -- 3 Validation: Knowing That the Answer Is Right -- 4 Univariate (Single DV) Search Techniques -- 5 Path Analysis -- 6 Stopping and Convergence Criteria: 1-D Applications -- 7 Multidimension Application Introduction and the Gradient -- 8 Elementary Gradient-Based Optimizers: CSLS and ISD -- 9 Second-Order Model-Based Optimizers: SQ and NR -- 10 Gradient-Based Optimizer Solutions: LM, RLM, CG, BFGS, RG, and GRG -- 11 Direct Search Techniques -- 12 Linear Programming -- 13 Dynamic Programming -- 14 Genetic Algorithms and Evolutionary Computation -- 15 Intuitive Optimization -- 16 Surface Analysis II -- 17 Convergence Criteria 2: N-D Applications -- 18 Enhancements to Optimizers -- 19 Scaled Variables and Dimensional Consistency -- 20 Economic Optimization -- 21 Multiple OF and Constraint Applications -- 22 Constraints -- 23 Multiple Optima -- 24 Stochastic Objective Functions -- 25 Effects of Uncertainty -- 26 Optimization of Probable Outcomes and Distribution Characteristics -- 27 Discrete and Integer Variables -- 28 Class Variables -- 29 Regression -- 30 Perspective -- 31 Response Surface Aberrations -- 32 Identifying the Models, OF, DV, Convergence Criteria, and Constraints -- 33 Evaluating Optimizers -- 34 Troubleshooting Optimizers -- 35 Analysis of Leapfrogging -- 36 Case Study 1: Economic Optimization of a Pipe System -- 37 Case Study 2: Queuing Study -- 38 Case Study 3: Retirement Study -- 39 Case Study 4: A Goddard Rocket Study -- 40 Case Study 5: Reservoir -- 41 Case Study 6: Area Coverage -- 42 Case Study 7: Approximating Series Solution to an ODE -- 43 Case Study 8: Horizontal Tank Vapor-Liquid Separator -- 44 Case Study 9: In Vitro Fertilization -- 45 Case Study 10: Data Reconciliation -- Back Matter. - System requirements: Adobe Acrobat Reader. - Mode of access: Internet via World Wide Web | ||
520 | |a Optimization is an inherent human tendency that gained new life after the advent of calculus; now, as the world grows increasingly reliant on complex systems, optimization has become both more important and more challenging than ever before. Engineering Optimization provides a practically-focused introduction to modern engineering optimization best practices, covering fundamental analytical and numerical techniques throughout each stage of the optimization process. Although essential algorithms are explained in detail, the focus lies more in the human function: how to create an appropriate objective function, choose decision variables, identify and incorporate constraints, define convergence, and other critical issues that define the success or failure of an optimization project. | ||
520 | |a Examples, exercises, and homework throughout reinforce the author's "do, not study" approach to learning, underscoring the application-oriented discussion that provides a deep, generic understanding of the optimization process that can be applied to any field. | ||
520 | |a Providing excellent reference for students or professionals, Engineering Optimization: Describes and develops a variety of algorithms, including gradient based (such as Newton's, and Levenberg-Marquardt), direct search (such as Hooke-Jeeves, Leapfrogging, and Particle Swarm), along with surrogate functions for surface characterization Provides guidance on optimizer choice by application, and explains how to determine appropriate optimizer parameter values Details current best practices for critical stages of specifying an optimization procedure, including decision variables, defining constraints, and relationship modeling Provides access to software and Visual Basic macros for Excel on the companion website, along with solutions to examples presented in the book Clear explanations, explicit equation derivations, and practical examples make this book ideal for use as part of a class or self-study, assuming a basic understanding of statistics, calculus, computer programming, | ||
650 | 4 | |a TECHNOLOGY & ENGINEERING / Engineering (General) / bisacsh | |
650 | 4 | |a TECHNOLOGY & ENGINEERING / Reference / bisacsh | |
650 | 4 | |a Technology & Engineering / Mechanical / bisacsh | |
650 | 4 | |a Engineering / Mathematical models | |
650 | 4 | |a Mathematical optimization | |
650 | 0 | 7 | |a Ingenieurwissenschaften |0 (DE-588)4137304-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
653 | |a Electronic books | ||
689 | 0 | 0 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | 1 | |a Ingenieurwissenschaften |0 (DE-588)4137304-2 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a The American Society of Mechanical Engineers |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781118936337 |
856 | 4 | 0 | |u https://asmedigitalcollection.asme.org/ebooks/book/17/Engineering-Optimization-Applications-Methods-and |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-240-ASM | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032055390 |
Datensatz im Suchindex
_version_ | 1804181340575236096 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Rhinehart, R. Russell 1946- |
author_facet | Rhinehart, R. Russell 1946- |
author_role | aut |
author_sort | Rhinehart, R. Russell 1946- |
author_variant | r r r rr rrr |
building | Verbundindex |
bvnumber | BV046644082 |
classification_rvk | QH 420 |
collection | ZDB-240-ASM |
ctrlnum | (ZDB-240-ASM)1011151861OPT (OCoLC)1148071285 (DE-599)BVBBV046644082 |
dewey-full | 620.001/5196 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.001/5196 |
dewey-search | 620.001/5196 |
dewey-sort | 3620.001 45196 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06064nmm a2200553zc 4500</leader><controlfield tag="001">BV046644082</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201105 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200327s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118936320</subfield><subfield code="9">978-1-118-93632-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1118936329</subfield><subfield code="9">1-118-93632-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1115/1.861OPT</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-240-ASM)1011151861OPT</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1148071285</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046644082</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.001/5196</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 420</subfield><subfield code="0">(DE-625)141574:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rhinehart, R. Russell</subfield><subfield code="d">1946-</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Engineering optimization</subfield><subfield code="b">applications, methods and analysis</subfield><subfield code="c">R. Russell Rhinehart</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, N.Y.</subfield><subfield code="b">The American Society of Mechanical Engineers</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (770 Seiten)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Front Matter -- 1 Optimization: Introduction and Concepts -- 2 Optimization Application Diversity and Complexity -- 3 Validation: Knowing That the Answer Is Right -- 4 Univariate (Single DV) Search Techniques -- 5 Path Analysis -- 6 Stopping and Convergence Criteria: 1-D Applications -- 7 Multidimension Application Introduction and the Gradient -- 8 Elementary Gradient-Based Optimizers: CSLS and ISD -- 9 Second-Order Model-Based Optimizers: SQ and NR -- 10 Gradient-Based Optimizer Solutions: LM, RLM, CG, BFGS, RG, and GRG -- 11 Direct Search Techniques -- 12 Linear Programming -- 13 Dynamic Programming -- 14 Genetic Algorithms and Evolutionary Computation -- 15 Intuitive Optimization -- 16 Surface Analysis II -- 17 Convergence Criteria 2: N-D Applications -- 18 Enhancements to Optimizers -- 19 Scaled Variables and Dimensional Consistency -- 20 Economic Optimization -- 21 Multiple OF and Constraint Applications -- 22 Constraints -- 23 Multiple Optima -- 24 Stochastic Objective Functions -- 25 Effects of Uncertainty -- 26 Optimization of Probable Outcomes and Distribution Characteristics -- 27 Discrete and Integer Variables -- 28 Class Variables -- 29 Regression -- 30 Perspective -- 31 Response Surface Aberrations -- 32 Identifying the Models, OF, DV, Convergence Criteria, and Constraints -- 33 Evaluating Optimizers -- 34 Troubleshooting Optimizers -- 35 Analysis of Leapfrogging -- 36 Case Study 1: Economic Optimization of a Pipe System -- 37 Case Study 2: Queuing Study -- 38 Case Study 3: Retirement Study -- 39 Case Study 4: A Goddard Rocket Study -- 40 Case Study 5: Reservoir -- 41 Case Study 6: Area Coverage -- 42 Case Study 7: Approximating Series Solution to an ODE -- 43 Case Study 8: Horizontal Tank Vapor-Liquid Separator -- 44 Case Study 9: In Vitro Fertilization -- 45 Case Study 10: Data Reconciliation -- Back Matter. - System requirements: Adobe Acrobat Reader. - Mode of access: Internet via World Wide Web</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Optimization is an inherent human tendency that gained new life after the advent of calculus; now, as the world grows increasingly reliant on complex systems, optimization has become both more important and more challenging than ever before. Engineering Optimization provides a practically-focused introduction to modern engineering optimization best practices, covering fundamental analytical and numerical techniques throughout each stage of the optimization process. Although essential algorithms are explained in detail, the focus lies more in the human function: how to create an appropriate objective function, choose decision variables, identify and incorporate constraints, define convergence, and other critical issues that define the success or failure of an optimization project. </subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Examples, exercises, and homework throughout reinforce the author's "do, not study" approach to learning, underscoring the application-oriented discussion that provides a deep, generic understanding of the optimization process that can be applied to any field. </subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Providing excellent reference for students or professionals, Engineering Optimization: Describes and develops a variety of algorithms, including gradient based (such as Newton's, and Levenberg-Marquardt), direct search (such as Hooke-Jeeves, Leapfrogging, and Particle Swarm), along with surrogate functions for surface characterization Provides guidance on optimizer choice by application, and explains how to determine appropriate optimizer parameter values Details current best practices for critical stages of specifying an optimization procedure, including decision variables, defining constraints, and relationship modeling Provides access to software and Visual Basic macros for Excel on the companion website, along with solutions to examples presented in the book Clear explanations, explicit equation derivations, and practical examples make this book ideal for use as part of a class or self-study, assuming a basic understanding of statistics, calculus, computer programming, </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TECHNOLOGY & ENGINEERING / Engineering (General) / bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TECHNOLOGY & ENGINEERING / Reference / bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technology & Engineering / Mechanical / bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">The American Society of Mechanical Engineers</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781118936337</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://asmedigitalcollection.asme.org/ebooks/book/17/Engineering-Optimization-Applications-Methods-and</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-240-ASM</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032055390</subfield></datafield></record></collection> |
id | DE-604.BV046644082 |
illustrated | Illustrated |
index_date | 2024-07-03T14:14:56Z |
indexdate | 2024-07-10T08:50:06Z |
institution | BVB |
isbn | 9781118936320 1118936329 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032055390 |
oclc_num | 1148071285 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource (770 Seiten) illustrations |
psigel | ZDB-240-ASM |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | The American Society of Mechanical Engineers |
record_format | marc |
spelling | Rhinehart, R. Russell 1946- aut Engineering optimization applications, methods and analysis R. Russell Rhinehart New York, N.Y. The American Society of Mechanical Engineers [2018] 1 online resource (770 Seiten) illustrations txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index Front Matter -- 1 Optimization: Introduction and Concepts -- 2 Optimization Application Diversity and Complexity -- 3 Validation: Knowing That the Answer Is Right -- 4 Univariate (Single DV) Search Techniques -- 5 Path Analysis -- 6 Stopping and Convergence Criteria: 1-D Applications -- 7 Multidimension Application Introduction and the Gradient -- 8 Elementary Gradient-Based Optimizers: CSLS and ISD -- 9 Second-Order Model-Based Optimizers: SQ and NR -- 10 Gradient-Based Optimizer Solutions: LM, RLM, CG, BFGS, RG, and GRG -- 11 Direct Search Techniques -- 12 Linear Programming -- 13 Dynamic Programming -- 14 Genetic Algorithms and Evolutionary Computation -- 15 Intuitive Optimization -- 16 Surface Analysis II -- 17 Convergence Criteria 2: N-D Applications -- 18 Enhancements to Optimizers -- 19 Scaled Variables and Dimensional Consistency -- 20 Economic Optimization -- 21 Multiple OF and Constraint Applications -- 22 Constraints -- 23 Multiple Optima -- 24 Stochastic Objective Functions -- 25 Effects of Uncertainty -- 26 Optimization of Probable Outcomes and Distribution Characteristics -- 27 Discrete and Integer Variables -- 28 Class Variables -- 29 Regression -- 30 Perspective -- 31 Response Surface Aberrations -- 32 Identifying the Models, OF, DV, Convergence Criteria, and Constraints -- 33 Evaluating Optimizers -- 34 Troubleshooting Optimizers -- 35 Analysis of Leapfrogging -- 36 Case Study 1: Economic Optimization of a Pipe System -- 37 Case Study 2: Queuing Study -- 38 Case Study 3: Retirement Study -- 39 Case Study 4: A Goddard Rocket Study -- 40 Case Study 5: Reservoir -- 41 Case Study 6: Area Coverage -- 42 Case Study 7: Approximating Series Solution to an ODE -- 43 Case Study 8: Horizontal Tank Vapor-Liquid Separator -- 44 Case Study 9: In Vitro Fertilization -- 45 Case Study 10: Data Reconciliation -- Back Matter. - System requirements: Adobe Acrobat Reader. - Mode of access: Internet via World Wide Web Optimization is an inherent human tendency that gained new life after the advent of calculus; now, as the world grows increasingly reliant on complex systems, optimization has become both more important and more challenging than ever before. Engineering Optimization provides a practically-focused introduction to modern engineering optimization best practices, covering fundamental analytical and numerical techniques throughout each stage of the optimization process. Although essential algorithms are explained in detail, the focus lies more in the human function: how to create an appropriate objective function, choose decision variables, identify and incorporate constraints, define convergence, and other critical issues that define the success or failure of an optimization project. Examples, exercises, and homework throughout reinforce the author's "do, not study" approach to learning, underscoring the application-oriented discussion that provides a deep, generic understanding of the optimization process that can be applied to any field. Providing excellent reference for students or professionals, Engineering Optimization: Describes and develops a variety of algorithms, including gradient based (such as Newton's, and Levenberg-Marquardt), direct search (such as Hooke-Jeeves, Leapfrogging, and Particle Swarm), along with surrogate functions for surface characterization Provides guidance on optimizer choice by application, and explains how to determine appropriate optimizer parameter values Details current best practices for critical stages of specifying an optimization procedure, including decision variables, defining constraints, and relationship modeling Provides access to software and Visual Basic macros for Excel on the companion website, along with solutions to examples presented in the book Clear explanations, explicit equation derivations, and practical examples make this book ideal for use as part of a class or self-study, assuming a basic understanding of statistics, calculus, computer programming, TECHNOLOGY & ENGINEERING / Engineering (General) / bisacsh TECHNOLOGY & ENGINEERING / Reference / bisacsh Technology & Engineering / Mechanical / bisacsh Engineering / Mathematical models Mathematical optimization Ingenieurwissenschaften (DE-588)4137304-2 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf Electronic books Optimierung (DE-588)4043664-0 s Ingenieurwissenschaften (DE-588)4137304-2 s DE-604 The American Society of Mechanical Engineers Sonstige oth Erscheint auch als Druck-Ausgabe 9781118936337 https://asmedigitalcollection.asme.org/ebooks/book/17/Engineering-Optimization-Applications-Methods-and Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Rhinehart, R. Russell 1946- Engineering optimization applications, methods and analysis TECHNOLOGY & ENGINEERING / Engineering (General) / bisacsh TECHNOLOGY & ENGINEERING / Reference / bisacsh Technology & Engineering / Mechanical / bisacsh Engineering / Mathematical models Mathematical optimization Ingenieurwissenschaften (DE-588)4137304-2 gnd Optimierung (DE-588)4043664-0 gnd |
subject_GND | (DE-588)4137304-2 (DE-588)4043664-0 |
title | Engineering optimization applications, methods and analysis |
title_auth | Engineering optimization applications, methods and analysis |
title_exact_search | Engineering optimization applications, methods and analysis |
title_exact_search_txtP | Engineering optimization applications, methods and analysis |
title_full | Engineering optimization applications, methods and analysis R. Russell Rhinehart |
title_fullStr | Engineering optimization applications, methods and analysis R. Russell Rhinehart |
title_full_unstemmed | Engineering optimization applications, methods and analysis R. Russell Rhinehart |
title_short | Engineering optimization |
title_sort | engineering optimization applications methods and analysis |
title_sub | applications, methods and analysis |
topic | TECHNOLOGY & ENGINEERING / Engineering (General) / bisacsh TECHNOLOGY & ENGINEERING / Reference / bisacsh Technology & Engineering / Mechanical / bisacsh Engineering / Mathematical models Mathematical optimization Ingenieurwissenschaften (DE-588)4137304-2 gnd Optimierung (DE-588)4043664-0 gnd |
topic_facet | TECHNOLOGY & ENGINEERING / Engineering (General) / bisacsh TECHNOLOGY & ENGINEERING / Reference / bisacsh Technology & Engineering / Mechanical / bisacsh Engineering / Mathematical models Mathematical optimization Ingenieurwissenschaften Optimierung |
url | https://asmedigitalcollection.asme.org/ebooks/book/17/Engineering-Optimization-Applications-Methods-and |
work_keys_str_mv | AT rhinehartrrussell engineeringoptimizationapplicationsmethodsandanalysis AT theamericansocietyofmechanicalengineers engineeringoptimizationapplicationsmethodsandanalysis |