GFP whole cell microbial biosensors: scale-up and scale-down effects on biopharmaceutical processes
Two strategies are usually considered for the optimization of microbial bioprocesses. The first one involves genetic or metabolic engineering of the target microbial strains in order to improve its production efficiency or its tolerance to adverse conditions. The second one is based on the chemical...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York
American Society of Mechanical Engineers
2013
|
Schriftenreihe: | Biomedical & nanomedical technologies
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Two strategies are usually considered for the optimization of microbial bioprocesses. The first one involves genetic or metabolic engineering of the target microbial strains in order to improve its production efficiency or its tolerance to adverse conditions. The second one is based on the chemical engineering improvement of the bioreactors and scaling-up rules. This work is more particularly dedicated to this second class of parameters. Recent developments in bioreactor technologies follow the scaling-out principle, i.e. carrying out several cultures in parallel with controlled conditions for screening purposes. Several mini-bioreactor concepts, i.e. bioreactor with working volume of 1 to 100 mL with controlling devices, have been developed following this principle. In general, chemical engineering similarities between conventional stirred bioreactors and their miniature equivalent are well characterized. However, the actual scaling-up rules are not able to cope with the complexity of the microbial stress response. Indeed, microbial stress response still remains not completely understood considering the process perturbations and the environmental fluctuations accompanying the scaling-up to industrial bioreactors. At this time, this kind of response can only be experimentally predicted by using scale-down bioreactors, i.e. lab-scale bioreactors designed in order to reproduce mixing imperfections that have to be expected at large-scale. However, the use of such an approach is time consuming and requires an experimented staff to elaborate the scaling-down protocols. Indeed, bioprocess development involves several steps which cannot be necessarily linked with each other considering the different cultivation equipment used |
Beschreibung: | System requirements: Adobe Acrobat Reader. - Mode of access: World Wide Web |
Beschreibung: | 1 Online-Ressource (43 Seiten) illustrations (some color) |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046643979 | ||
003 | DE-604 | ||
005 | 20220119 | ||
007 | cr|uuu---uuuuu | ||
008 | 200327s2013 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1115/1.860090 |2 doi | |
035 | |a (ZDB-240-ASM)1011151860090 | ||
035 | |a (OCoLC)1148153705 | ||
035 | |a (DE-599)BVBBV046643979 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
100 | 1 | |a Delvigne, Frank |e Verfasser |4 aut | |
245 | 1 | 0 | |a GFP whole cell microbial biosensors |b scale-up and scale-down effects on biopharmaceutical processes |c Frank Delvigne, Alison Brognaux, Shanshan Han, Søren J. Sørensen, Philippe Thonart |
246 | 1 | 3 | |a Green fluorescent protein whole cell microbial biosensors |
264 | 1 | |a New York |b American Society of Mechanical Engineers |c 2013 | |
300 | |a 1 Online-Ressource (43 Seiten) |b illustrations (some color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Biomedical & nanomedical technologies | |
500 | |a System requirements: Adobe Acrobat Reader. - Mode of access: World Wide Web | ||
505 | 8 | |a Includes bibliographical references (pages [36]-43) | |
505 | 8 | |a Interaction between fluid flow and microbial cells : importance of the operating scale -- Stochastic simulation of the displacement of microbial cells along concentration field -- Experimental results gained from the physiological response of GFP biosensors in scale-down conditions -- Another source of information : protein leakage and the study of the secretome | |
520 | |a Two strategies are usually considered for the optimization of microbial bioprocesses. The first one involves genetic or metabolic engineering of the target microbial strains in order to improve its production efficiency or its tolerance to adverse conditions. The second one is based on the chemical engineering improvement of the bioreactors and scaling-up rules. This work is more particularly dedicated to this second class of parameters. Recent developments in bioreactor technologies follow the scaling-out principle, i.e. carrying out several cultures in parallel with controlled conditions for screening purposes. Several mini-bioreactor concepts, i.e. bioreactor with working volume of 1 to 100 mL with controlling devices, have been developed following this principle. In general, chemical engineering similarities between conventional stirred bioreactors and their miniature equivalent are well characterized. However, the actual scaling-up rules are not able to cope with the complexity of the microbial stress response. Indeed, microbial stress response still remains not completely understood considering the process perturbations and the environmental fluctuations accompanying the scaling-up to industrial bioreactors. At this time, this kind of response can only be experimentally predicted by using scale-down bioreactors, i.e. lab-scale bioreactors designed in order to reproduce mixing imperfections that have to be expected at large-scale. However, the use of such an approach is time consuming and requires an experimented staff to elaborate the scaling-down protocols. Indeed, bioprocess development involves several steps which cannot be necessarily linked with each other considering the different cultivation equipment used | ||
650 | 4 | |a Microbial biotechnology | |
650 | 4 | |a Green fluorescent protein | |
650 | 4 | |a Biosensors | |
650 | 0 | 7 | |a Bioverfahrenstechnik |0 (DE-588)4307166-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grün fluoreszierendes Protein |0 (DE-588)4508128-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikrobieller Sensor |0 (DE-588)4339298-2 |2 gnd |9 rswk-swf |
653 | |a Electronic books | ||
689 | 0 | 0 | |a Grün fluoreszierendes Protein |0 (DE-588)4508128-1 |D s |
689 | 0 | 1 | |a Mikrobieller Sensor |0 (DE-588)4339298-2 |D s |
689 | 0 | 2 | |a Bioverfahrenstechnik |0 (DE-588)4307166-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Brognaux, Alison |e Sonstige |4 oth | |
700 | 1 | |a Han, Shanshan |e Sonstige |4 oth | |
700 | 1 | |a Sørensen, Søren J. |e Sonstige |4 oth | |
700 | 1 | |a Thonart, Philippe |e Sonstige |4 oth | |
710 | 2 | |a American Society of Mechanical Engineers |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://asmedigitalcollection.asme.org/ebooks/book/202/GFP-Whole-Cell-Microbial-Biosensors-Scale-up-and |x Verlag |3 Volltext |
912 | |a ZDB-240-ASM | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032055300 |
Datensatz im Suchindex
_version_ | 1804181340382298112 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Delvigne, Frank |
author_facet | Delvigne, Frank |
author_role | aut |
author_sort | Delvigne, Frank |
author_variant | f d fd |
building | Verbundindex |
bvnumber | BV046643979 |
collection | ZDB-240-ASM |
contents | Includes bibliographical references (pages [36]-43) Interaction between fluid flow and microbial cells : importance of the operating scale -- Stochastic simulation of the displacement of microbial cells along concentration field -- Experimental results gained from the physiological response of GFP biosensors in scale-down conditions -- Another source of information : protein leakage and the study of the secretome |
ctrlnum | (ZDB-240-ASM)1011151860090 (OCoLC)1148153705 (DE-599)BVBBV046643979 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04388nmm a2200553zc 4500</leader><controlfield tag="001">BV046643979</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220119 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200327s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1115/1.860090</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-240-ASM)1011151860090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1148153705</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046643979</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Delvigne, Frank</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">GFP whole cell microbial biosensors</subfield><subfield code="b">scale-up and scale-down effects on biopharmaceutical processes</subfield><subfield code="c">Frank Delvigne, Alison Brognaux, Shanshan Han, Søren J. Sørensen, Philippe Thonart</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Green fluorescent protein whole cell microbial biosensors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">American Society of Mechanical Engineers</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (43 Seiten)</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Biomedical & nanomedical technologies</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">System requirements: Adobe Acrobat Reader. - Mode of access: World Wide Web</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Includes bibliographical references (pages [36]-43)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Interaction between fluid flow and microbial cells : importance of the operating scale -- Stochastic simulation of the displacement of microbial cells along concentration field -- Experimental results gained from the physiological response of GFP biosensors in scale-down conditions -- Another source of information : protein leakage and the study of the secretome</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Two strategies are usually considered for the optimization of microbial bioprocesses. The first one involves genetic or metabolic engineering of the target microbial strains in order to improve its production efficiency or its tolerance to adverse conditions. The second one is based on the chemical engineering improvement of the bioreactors and scaling-up rules. This work is more particularly dedicated to this second class of parameters. Recent developments in bioreactor technologies follow the scaling-out principle, i.e. carrying out several cultures in parallel with controlled conditions for screening purposes. Several mini-bioreactor concepts, i.e. bioreactor with working volume of 1 to 100 mL with controlling devices, have been developed following this principle. In general, chemical engineering similarities between conventional stirred bioreactors and their miniature equivalent are well characterized. However, the actual scaling-up rules are not able to cope with the complexity of the microbial stress response. Indeed, microbial stress response still remains not completely understood considering the process perturbations and the environmental fluctuations accompanying the scaling-up to industrial bioreactors. At this time, this kind of response can only be experimentally predicted by using scale-down bioreactors, i.e. lab-scale bioreactors designed in order to reproduce mixing imperfections that have to be expected at large-scale. However, the use of such an approach is time consuming and requires an experimented staff to elaborate the scaling-down protocols. Indeed, bioprocess development involves several steps which cannot be necessarily linked with each other considering the different cultivation equipment used</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbial biotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green fluorescent protein</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosensors</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bioverfahrenstechnik</subfield><subfield code="0">(DE-588)4307166-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grün fluoreszierendes Protein</subfield><subfield code="0">(DE-588)4508128-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikrobieller Sensor</subfield><subfield code="0">(DE-588)4339298-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Grün fluoreszierendes Protein</subfield><subfield code="0">(DE-588)4508128-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mikrobieller Sensor</subfield><subfield code="0">(DE-588)4339298-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Bioverfahrenstechnik</subfield><subfield code="0">(DE-588)4307166-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brognaux, Alison</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Shanshan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sørensen, Søren J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thonart, Philippe</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">American Society of Mechanical Engineers</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://asmedigitalcollection.asme.org/ebooks/book/202/GFP-Whole-Cell-Microbial-Biosensors-Scale-up-and</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-240-ASM</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032055300</subfield></datafield></record></collection> |
id | DE-604.BV046643979 |
illustrated | Illustrated |
index_date | 2024-07-03T14:14:55Z |
indexdate | 2024-07-10T08:50:06Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032055300 |
oclc_num | 1148153705 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource (43 Seiten) illustrations (some color) |
psigel | ZDB-240-ASM |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | American Society of Mechanical Engineers |
record_format | marc |
series2 | Biomedical & nanomedical technologies |
spelling | Delvigne, Frank Verfasser aut GFP whole cell microbial biosensors scale-up and scale-down effects on biopharmaceutical processes Frank Delvigne, Alison Brognaux, Shanshan Han, Søren J. Sørensen, Philippe Thonart Green fluorescent protein whole cell microbial biosensors New York American Society of Mechanical Engineers 2013 1 Online-Ressource (43 Seiten) illustrations (some color) txt rdacontent c rdamedia cr rdacarrier Biomedical & nanomedical technologies System requirements: Adobe Acrobat Reader. - Mode of access: World Wide Web Includes bibliographical references (pages [36]-43) Interaction between fluid flow and microbial cells : importance of the operating scale -- Stochastic simulation of the displacement of microbial cells along concentration field -- Experimental results gained from the physiological response of GFP biosensors in scale-down conditions -- Another source of information : protein leakage and the study of the secretome Two strategies are usually considered for the optimization of microbial bioprocesses. The first one involves genetic or metabolic engineering of the target microbial strains in order to improve its production efficiency or its tolerance to adverse conditions. The second one is based on the chemical engineering improvement of the bioreactors and scaling-up rules. This work is more particularly dedicated to this second class of parameters. Recent developments in bioreactor technologies follow the scaling-out principle, i.e. carrying out several cultures in parallel with controlled conditions for screening purposes. Several mini-bioreactor concepts, i.e. bioreactor with working volume of 1 to 100 mL with controlling devices, have been developed following this principle. In general, chemical engineering similarities between conventional stirred bioreactors and their miniature equivalent are well characterized. However, the actual scaling-up rules are not able to cope with the complexity of the microbial stress response. Indeed, microbial stress response still remains not completely understood considering the process perturbations and the environmental fluctuations accompanying the scaling-up to industrial bioreactors. At this time, this kind of response can only be experimentally predicted by using scale-down bioreactors, i.e. lab-scale bioreactors designed in order to reproduce mixing imperfections that have to be expected at large-scale. However, the use of such an approach is time consuming and requires an experimented staff to elaborate the scaling-down protocols. Indeed, bioprocess development involves several steps which cannot be necessarily linked with each other considering the different cultivation equipment used Microbial biotechnology Green fluorescent protein Biosensors Bioverfahrenstechnik (DE-588)4307166-1 gnd rswk-swf Grün fluoreszierendes Protein (DE-588)4508128-1 gnd rswk-swf Mikrobieller Sensor (DE-588)4339298-2 gnd rswk-swf Electronic books Grün fluoreszierendes Protein (DE-588)4508128-1 s Mikrobieller Sensor (DE-588)4339298-2 s Bioverfahrenstechnik (DE-588)4307166-1 s DE-604 Brognaux, Alison Sonstige oth Han, Shanshan Sonstige oth Sørensen, Søren J. Sonstige oth Thonart, Philippe Sonstige oth American Society of Mechanical Engineers Sonstige oth https://asmedigitalcollection.asme.org/ebooks/book/202/GFP-Whole-Cell-Microbial-Biosensors-Scale-up-and Verlag Volltext |
spellingShingle | Delvigne, Frank GFP whole cell microbial biosensors scale-up and scale-down effects on biopharmaceutical processes Includes bibliographical references (pages [36]-43) Interaction between fluid flow and microbial cells : importance of the operating scale -- Stochastic simulation of the displacement of microbial cells along concentration field -- Experimental results gained from the physiological response of GFP biosensors in scale-down conditions -- Another source of information : protein leakage and the study of the secretome Microbial biotechnology Green fluorescent protein Biosensors Bioverfahrenstechnik (DE-588)4307166-1 gnd Grün fluoreszierendes Protein (DE-588)4508128-1 gnd Mikrobieller Sensor (DE-588)4339298-2 gnd |
subject_GND | (DE-588)4307166-1 (DE-588)4508128-1 (DE-588)4339298-2 |
title | GFP whole cell microbial biosensors scale-up and scale-down effects on biopharmaceutical processes |
title_alt | Green fluorescent protein whole cell microbial biosensors |
title_auth | GFP whole cell microbial biosensors scale-up and scale-down effects on biopharmaceutical processes |
title_exact_search | GFP whole cell microbial biosensors scale-up and scale-down effects on biopharmaceutical processes |
title_exact_search_txtP | GFP whole cell microbial biosensors scale-up and scale-down effects on biopharmaceutical processes |
title_full | GFP whole cell microbial biosensors scale-up and scale-down effects on biopharmaceutical processes Frank Delvigne, Alison Brognaux, Shanshan Han, Søren J. Sørensen, Philippe Thonart |
title_fullStr | GFP whole cell microbial biosensors scale-up and scale-down effects on biopharmaceutical processes Frank Delvigne, Alison Brognaux, Shanshan Han, Søren J. Sørensen, Philippe Thonart |
title_full_unstemmed | GFP whole cell microbial biosensors scale-up and scale-down effects on biopharmaceutical processes Frank Delvigne, Alison Brognaux, Shanshan Han, Søren J. Sørensen, Philippe Thonart |
title_short | GFP whole cell microbial biosensors |
title_sort | gfp whole cell microbial biosensors scale up and scale down effects on biopharmaceutical processes |
title_sub | scale-up and scale-down effects on biopharmaceutical processes |
topic | Microbial biotechnology Green fluorescent protein Biosensors Bioverfahrenstechnik (DE-588)4307166-1 gnd Grün fluoreszierendes Protein (DE-588)4508128-1 gnd Mikrobieller Sensor (DE-588)4339298-2 gnd |
topic_facet | Microbial biotechnology Green fluorescent protein Biosensors Bioverfahrenstechnik Grün fluoreszierendes Protein Mikrobieller Sensor |
url | https://asmedigitalcollection.asme.org/ebooks/book/202/GFP-Whole-Cell-Microbial-Biosensors-Scale-up-and |
work_keys_str_mv | AT delvignefrank gfpwholecellmicrobialbiosensorsscaleupandscaledowneffectsonbiopharmaceuticalprocesses AT brognauxalison gfpwholecellmicrobialbiosensorsscaleupandscaledowneffectsonbiopharmaceuticalprocesses AT hanshanshan gfpwholecellmicrobialbiosensorsscaleupandscaledowneffectsonbiopharmaceuticalprocesses AT sørensensørenj gfpwholecellmicrobialbiosensorsscaleupandscaledowneffectsonbiopharmaceuticalprocesses AT thonartphilippe gfpwholecellmicrobialbiosensorsscaleupandscaledowneffectsonbiopharmaceuticalprocesses AT americansocietyofmechanicalengineers gfpwholecellmicrobialbiosensorsscaleupandscaledowneffectsonbiopharmaceuticalprocesses AT delvignefrank greenfluorescentproteinwholecellmicrobialbiosensors AT brognauxalison greenfluorescentproteinwholecellmicrobialbiosensors AT hanshanshan greenfluorescentproteinwholecellmicrobialbiosensors AT sørensensørenj greenfluorescentproteinwholecellmicrobialbiosensors AT thonartphilippe greenfluorescentproteinwholecellmicrobialbiosensors AT americansocietyofmechanicalengineers greenfluorescentproteinwholecellmicrobialbiosensors |