Topics in mathematical biology:
This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Springer Nature
[2017]
|
Schriftenreihe: | Lecture notes on mathematical modelling in the life sciences
|
Schlagworte: | |
Online-Zugang: | Inhaltstext |
Zusammenfassung: | This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability of steady states, epidemic outbreaks, survival of the fittest, and speeds of invading fronts. The textbook is intended for graduate students and researchers in mathematical biology who have a solid background in linear algebra, differential equations and dynamical systems. Readers can find gems of unexpected beauty within these pages, and those who knew K.P. (as he was often called) well will likely feel his presence and hear him speaking to them as they read Preface -- 1.Coupling and quiescence -- 2.Delay and age -- 3.Lotka-Volterra and replicator systems -- 4.Ecology -- 5.Homogeneous systems -- 6.Epidemic models -- 7.Coupled movements -- 8.Traveling fronts -- Index |
Beschreibung: | xiv, 353 Seiten Diagramme |
ISBN: | 9783319656205 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046622340 | ||
003 | DE-604 | ||
005 | 20200901 | ||
007 | t| | ||
008 | 200310s2017 sz |||| |||| 00||| eng d | ||
020 | |a 9783319656205 |9 978-3-319-65620-5 | ||
035 | |a (OCoLC)1026401602 | ||
035 | |a (DE-599)GBV898620279 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-188 |a DE-83 | ||
084 | |a WC 7000 |0 (DE-625)148142: |2 rvk | ||
084 | |a 92B05 |2 msc | ||
084 | |a 42.11 |2 bkl | ||
084 | |a 35Q92 |2 msc | ||
084 | |a 92Dxx |2 msc | ||
100 | 1 | |a Hadeler, Karl-Peter |d 1936-2017 |0 (DE-588)107953366 |4 aut | |
245 | 1 | 0 | |a Topics in mathematical biology |c Karl Peter Hadeler |
264 | 1 | |a Cham |b Springer Nature |c [2017] | |
300 | |a xiv, 353 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Lecture notes on mathematical modelling in the life sciences | |
520 | 3 | |a This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability of steady states, epidemic outbreaks, survival of the fittest, and speeds of invading fronts. The textbook is intended for graduate students and researchers in mathematical biology who have a solid background in linear algebra, differential equations and dynamical systems. Readers can find gems of unexpected beauty within these pages, and those who knew K.P. (as he was often called) well will likely feel his presence and hear him speaking to them as they read | |
520 | 3 | |a Preface -- 1.Coupling and quiescence -- 2.Delay and age -- 3.Lotka-Volterra and replicator systems -- 4.Ecology -- 5.Homogeneous systems -- 6.Epidemic models -- 7.Coupled movements -- 8.Traveling fronts -- Index | |
653 | 0 | |a Mathematics | |
653 | 0 | |a Biomathematics | |
653 | 0 | |a Mathematics | |
653 | 0 | |a Biomathematics | |
710 | 2 | |a Springer-Verlag GmbH |0 (DE-588)1065168780 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.1007/978-3-319-65621-2 |
856 | 4 | 2 | |m B:ZBM |m V:DE-601 |q pdf/application |u http://zbmath.org/?q=an:1382.92003 |v 2018-04-25 |x Verlag |y Zentralblatt MATH |3 Inhaltstext |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032034036 |
Datensatz im Suchindex
_version_ | 1817968121674203136 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Hadeler, Karl-Peter 1936-2017 |
author_GND | (DE-588)107953366 |
author_facet | Hadeler, Karl-Peter 1936-2017 |
author_role | aut |
author_sort | Hadeler, Karl-Peter 1936-2017 |
author_variant | k p h kph |
building | Verbundindex |
bvnumber | BV046622340 |
classification_rvk | WC 7000 |
ctrlnum | (OCoLC)1026401602 (DE-599)GBV898620279 |
discipline | Biologie |
discipline_str_mv | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV046622340</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200901</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">200310s2017 sz |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319656205</subfield><subfield code="9">978-3-319-65620-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1026401602</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV898620279</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7000</subfield><subfield code="0">(DE-625)148142:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">92B05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35Q92</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">92Dxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hadeler, Karl-Peter</subfield><subfield code="d">1936-2017</subfield><subfield code="0">(DE-588)107953366</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topics in mathematical biology</subfield><subfield code="c">Karl Peter Hadeler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer Nature</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 353 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture notes on mathematical modelling in the life sciences</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability of steady states, epidemic outbreaks, survival of the fittest, and speeds of invading fronts. The textbook is intended for graduate students and researchers in mathematical biology who have a solid background in linear algebra, differential equations and dynamical systems. Readers can find gems of unexpected beauty within these pages, and those who knew K.P. (as he was often called) well will likely feel his presence and hear him speaking to them as they read</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Preface -- 1.Coupling and quiescence -- 2.Delay and age -- 3.Lotka-Volterra and replicator systems -- 4.Ecology -- 5.Homogeneous systems -- 6.Epidemic models -- 7.Coupled movements -- 8.Traveling fronts -- Index</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biomathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biomathematics</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Springer-Verlag GmbH</subfield><subfield code="0">(DE-588)1065168780</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.1007/978-3-319-65621-2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:ZBM</subfield><subfield code="m">V:DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">http://zbmath.org/?q=an:1382.92003</subfield><subfield code="v">2018-04-25</subfield><subfield code="x">Verlag</subfield><subfield code="y">Zentralblatt MATH</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032034036</subfield></datafield></record></collection> |
id | DE-604.BV046622340 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:08:32Z |
indexdate | 2024-12-09T13:05:04Z |
institution | BVB |
institution_GND | (DE-588)1065168780 |
isbn | 9783319656205 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032034036 |
oclc_num | 1026401602 |
open_access_boolean | |
owner | DE-188 DE-83 |
owner_facet | DE-188 DE-83 |
physical | xiv, 353 Seiten Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Springer Nature |
record_format | marc |
series2 | Lecture notes on mathematical modelling in the life sciences |
spelling | Hadeler, Karl-Peter 1936-2017 (DE-588)107953366 aut Topics in mathematical biology Karl Peter Hadeler Cham Springer Nature [2017] xiv, 353 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Lecture notes on mathematical modelling in the life sciences This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability of steady states, epidemic outbreaks, survival of the fittest, and speeds of invading fronts. The textbook is intended for graduate students and researchers in mathematical biology who have a solid background in linear algebra, differential equations and dynamical systems. Readers can find gems of unexpected beauty within these pages, and those who knew K.P. (as he was often called) well will likely feel his presence and hear him speaking to them as they read Preface -- 1.Coupling and quiescence -- 2.Delay and age -- 3.Lotka-Volterra and replicator systems -- 4.Ecology -- 5.Homogeneous systems -- 6.Epidemic models -- 7.Coupled movements -- 8.Traveling fronts -- Index Mathematics Biomathematics Springer-Verlag GmbH (DE-588)1065168780 pbl Erscheint auch als Online-Ausgabe 10.1007/978-3-319-65621-2 B:ZBM V:DE-601 pdf/application http://zbmath.org/?q=an:1382.92003 2018-04-25 Verlag Zentralblatt MATH Inhaltstext |
spellingShingle | Hadeler, Karl-Peter 1936-2017 Topics in mathematical biology |
title | Topics in mathematical biology |
title_auth | Topics in mathematical biology |
title_exact_search | Topics in mathematical biology |
title_exact_search_txtP | Topics in mathematical biology |
title_full | Topics in mathematical biology Karl Peter Hadeler |
title_fullStr | Topics in mathematical biology Karl Peter Hadeler |
title_full_unstemmed | Topics in mathematical biology Karl Peter Hadeler |
title_short | Topics in mathematical biology |
title_sort | topics in mathematical biology |
url | http://zbmath.org/?q=an:1382.92003 |
work_keys_str_mv | AT hadelerkarlpeter topicsinmathematicalbiology AT springerverlaggmbh topicsinmathematicalbiology |