Toeplitz matrices and operators:
Why Toeplitz-Hankel? Motivations and panorama -- Hankel and Toeplitz--brother pperators on the Space H2 -- H2 theory of Toeplitz operators -- Applications : Riemann-Hilbert, Wiener-Hopf, and SIO -- Toeplitz matrices : moments, spectra, asymptotics
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Buch |
Sprache: | English French |
Veröffentlicht: |
Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore
Cambridge University Press
2020
|
Schriftenreihe: | Cambridge studies in advanced mathematics
182 |
Schlagworte: | |
Zusammenfassung: | Why Toeplitz-Hankel? Motivations and panorama -- Hankel and Toeplitz--brother pperators on the Space H2 -- H2 theory of Toeplitz operators -- Applications : Riemann-Hilbert, Wiener-Hopf, and SIO -- Toeplitz matrices : moments, spectra, asymptotics |
Beschreibung: | Originally published as: Matrices et opérateurs de Toeplitz by Calvage et Mounet, 2017. - Includes bibliographical references and index |
Beschreibung: | xxii, 430 Seiten Illustrationen 24 cm |
ISBN: | 9781107198500 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV046620147 | ||
003 | DE-604 | ||
005 | 20200629 | ||
007 | t | ||
008 | 200309s2020 xxka||| |||| 00||| eng d | ||
020 | |a 9781107198500 |c hardback |9 978-1-107-19850-0 | ||
035 | |a (OCoLC)1164638367 | ||
035 | |a (DE-599)KXP1685842364 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 1 | |a eng |h fre | |
044 | |a xxk |c XA-GB |a xxu |c XD-US |a at |c XE-AU |a si |c XB-SG | ||
049 | |a DE-91G |a DE-20 |a DE-29T | ||
050 | 0 | |a QA188 | |
082 | 0 | |a 512.9/434 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a 31.47 |2 bkl | ||
084 | |a 31.25 |2 bkl | ||
084 | |a MAT 470f |2 stub | ||
100 | 1 | |a Nikolski, Nikolai K. |d 1940- |e Verfasser |0 (DE-588)12430382X |4 aut | |
240 | 1 | 0 | |a Matrices et opérateurs de Toeplitz |
245 | 1 | 0 | |a Toeplitz matrices and operators |c Nikolaï Nikolski, Université de Bordeaux ; translated by Danièle Gibbons, Greg Gibbons |
264 | 1 | |a Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore |b Cambridge University Press |c 2020 | |
264 | 4 | |c © 2020 | |
300 | |a xxii, 430 Seiten |b Illustrationen |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 182 | |
500 | |a Originally published as: Matrices et opérateurs de Toeplitz by Calvage et Mounet, 2017. - Includes bibliographical references and index | ||
520 | 3 | |a Why Toeplitz-Hankel? Motivations and panorama -- Hankel and Toeplitz--brother pperators on the Space H2 -- H2 theory of Toeplitz operators -- Applications : Riemann-Hilbert, Wiener-Hopf, and SIO -- Toeplitz matrices : moments, spectra, asymptotics | |
546 | |a In English, translated from the original French | ||
650 | 0 | 7 | |a Toeplitz-Matrix |0 (DE-588)4185611-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Toeplitz-Operator |0 (DE-588)4191521-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hankel-Matrix |0 (DE-588)4159080-6 |2 gnd |9 rswk-swf |
653 | 0 | |a Toeplitz matrices | |
653 | 0 | |a Toeplitz operators | |
689 | 0 | 0 | |a Hankel-Matrix |0 (DE-588)4159080-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Toeplitz-Operator |0 (DE-588)4191521-5 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Toeplitz-Matrix |0 (DE-588)4185611-9 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Gibbons, Danièle |d ca. 20./21. Jh. |0 (DE-588)1203756402 |4 trl | |
700 | 1 | |a Gibbons, Greg |d ca. 20./21. Jh. |0 (DE-588)1203756526 |4 trl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.1017/9781108182577 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-108-18257-7 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 182 |w (DE-604)BV000003678 |9 182 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032031893 |
Datensatz im Suchindex
_version_ | 1804181298546212864 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Nikolski, Nikolai K. 1940- |
author2 | Gibbons, Danièle ca. 20./21. Jh Gibbons, Greg ca. 20./21. Jh |
author2_role | trl trl |
author2_variant | d g dg g g gg |
author_GND | (DE-588)12430382X (DE-588)1203756402 (DE-588)1203756526 |
author_facet | Nikolski, Nikolai K. 1940- Gibbons, Danièle ca. 20./21. Jh Gibbons, Greg ca. 20./21. Jh |
author_role | aut |
author_sort | Nikolski, Nikolai K. 1940- |
author_variant | n k n nk nkn |
building | Verbundindex |
bvnumber | BV046620147 |
callnumber-first | Q - Science |
callnumber-label | QA188 |
callnumber-raw | QA188 |
callnumber-search | QA188 |
callnumber-sort | QA 3188 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 600 |
classification_tum | MAT 470f |
ctrlnum | (OCoLC)1164638367 (DE-599)KXP1685842364 |
dewey-full | 512.9/434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/434 |
dewey-search | 512.9/434 |
dewey-sort | 3512.9 3434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02661nam a2200601 cb4500</leader><controlfield tag="001">BV046620147</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200629 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200309s2020 xxka||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107198500</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-107-19850-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1164638367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1685842364</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield><subfield code="a">at</subfield><subfield code="c">XE-AU</subfield><subfield code="a">si</subfield><subfield code="c">XB-SG</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9/434</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.47</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 470f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nikolski, Nikolai K.</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12430382X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Matrices et opérateurs de Toeplitz</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Toeplitz matrices and operators</subfield><subfield code="c">Nikolaï Nikolski, Université de Bordeaux ; translated by Danièle Gibbons, Greg Gibbons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxii, 430 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">182</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally published as: Matrices et opérateurs de Toeplitz by Calvage et Mounet, 2017. - Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Why Toeplitz-Hankel? Motivations and panorama -- Hankel and Toeplitz--brother pperators on the Space H2 -- H2 theory of Toeplitz operators -- Applications : Riemann-Hilbert, Wiener-Hopf, and SIO -- Toeplitz matrices : moments, spectra, asymptotics</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English, translated from the original French</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Toeplitz-Matrix</subfield><subfield code="0">(DE-588)4185611-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Toeplitz-Operator</subfield><subfield code="0">(DE-588)4191521-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hankel-Matrix</subfield><subfield code="0">(DE-588)4159080-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Toeplitz matrices</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Toeplitz operators</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hankel-Matrix</subfield><subfield code="0">(DE-588)4159080-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Toeplitz-Operator</subfield><subfield code="0">(DE-588)4191521-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Toeplitz-Matrix</subfield><subfield code="0">(DE-588)4185611-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gibbons, Danièle</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1203756402</subfield><subfield code="4">trl</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gibbons, Greg</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1203756526</subfield><subfield code="4">trl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.1017/9781108182577</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-108-18257-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">182</subfield><subfield code="w">(DE-604)BV000003678</subfield><subfield code="9">182</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032031893</subfield></datafield></record></collection> |
id | DE-604.BV046620147 |
illustrated | Illustrated |
index_date | 2024-07-03T14:07:57Z |
indexdate | 2024-07-10T08:49:26Z |
institution | BVB |
isbn | 9781107198500 |
language | English French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032031893 |
oclc_num | 1164638367 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-20 DE-29T |
owner_facet | DE-91G DE-BY-TUM DE-20 DE-29T |
physical | xxii, 430 Seiten Illustrationen 24 cm |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Nikolski, Nikolai K. 1940- Verfasser (DE-588)12430382X aut Matrices et opérateurs de Toeplitz Toeplitz matrices and operators Nikolaï Nikolski, Université de Bordeaux ; translated by Danièle Gibbons, Greg Gibbons Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore Cambridge University Press 2020 © 2020 xxii, 430 Seiten Illustrationen 24 cm txt rdacontent n rdamedia nc rdacarrier Cambridge studies in advanced mathematics 182 Originally published as: Matrices et opérateurs de Toeplitz by Calvage et Mounet, 2017. - Includes bibliographical references and index Why Toeplitz-Hankel? Motivations and panorama -- Hankel and Toeplitz--brother pperators on the Space H2 -- H2 theory of Toeplitz operators -- Applications : Riemann-Hilbert, Wiener-Hopf, and SIO -- Toeplitz matrices : moments, spectra, asymptotics In English, translated from the original French Toeplitz-Matrix (DE-588)4185611-9 gnd rswk-swf Toeplitz-Operator (DE-588)4191521-5 gnd rswk-swf Hankel-Matrix (DE-588)4159080-6 gnd rswk-swf Toeplitz matrices Toeplitz operators Hankel-Matrix (DE-588)4159080-6 s DE-604 Toeplitz-Operator (DE-588)4191521-5 s Toeplitz-Matrix (DE-588)4185611-9 s Gibbons, Danièle ca. 20./21. Jh. (DE-588)1203756402 trl Gibbons, Greg ca. 20./21. Jh. (DE-588)1203756526 trl Erscheint auch als Online-Ausgabe 10.1017/9781108182577 Erscheint auch als Online-Ausgabe 978-1-108-18257-7 Cambridge studies in advanced mathematics 182 (DE-604)BV000003678 182 |
spellingShingle | Nikolski, Nikolai K. 1940- Toeplitz matrices and operators Cambridge studies in advanced mathematics Toeplitz-Matrix (DE-588)4185611-9 gnd Toeplitz-Operator (DE-588)4191521-5 gnd Hankel-Matrix (DE-588)4159080-6 gnd |
subject_GND | (DE-588)4185611-9 (DE-588)4191521-5 (DE-588)4159080-6 |
title | Toeplitz matrices and operators |
title_alt | Matrices et opérateurs de Toeplitz |
title_auth | Toeplitz matrices and operators |
title_exact_search | Toeplitz matrices and operators |
title_exact_search_txtP | Toeplitz matrices and operators |
title_full | Toeplitz matrices and operators Nikolaï Nikolski, Université de Bordeaux ; translated by Danièle Gibbons, Greg Gibbons |
title_fullStr | Toeplitz matrices and operators Nikolaï Nikolski, Université de Bordeaux ; translated by Danièle Gibbons, Greg Gibbons |
title_full_unstemmed | Toeplitz matrices and operators Nikolaï Nikolski, Université de Bordeaux ; translated by Danièle Gibbons, Greg Gibbons |
title_short | Toeplitz matrices and operators |
title_sort | toeplitz matrices and operators |
topic | Toeplitz-Matrix (DE-588)4185611-9 gnd Toeplitz-Operator (DE-588)4191521-5 gnd Hankel-Matrix (DE-588)4159080-6 gnd |
topic_facet | Toeplitz-Matrix Toeplitz-Operator Hankel-Matrix |
volume_link | (DE-604)BV000003678 |
work_keys_str_mv | AT nikolskinikolaik matricesetoperateursdetoeplitz AT gibbonsdaniele matricesetoperateursdetoeplitz AT gibbonsgreg matricesetoperateursdetoeplitz AT nikolskinikolaik toeplitzmatricesandoperators AT gibbonsdaniele toeplitzmatricesandoperators AT gibbonsgreg toeplitzmatricesandoperators |