Smart Meter Data Analytics: Electricity Consumer Behavior Modeling, Aggregation, and Forecasting
This book aims to make the best use of fine-grained smart meter data to process and translate them into actual information and incorporated into consumer behavior modeling and distribution system operations. It begins with an overview of recent developments in smart meter data analytics. Since data...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Singapore
Springer, Science Press
[2020]
|
Schlagworte: | |
Zusammenfassung: | This book aims to make the best use of fine-grained smart meter data to process and translate them into actual information and incorporated into consumer behavior modeling and distribution system operations. It begins with an overview of recent developments in smart meter data analytics. Since data management is the basis of further smart meter data analytics and its applications, three issues on data management, i.e., data compression, anomaly detection, and data generation, are subsequently studied. The following works try to model complex consumer behavior. Specific works include load profiling, pattern recognition, personalized price design, socio-demographic information identification, and household behavior coding. On this basis, the book extends consumer behavior in spatial and temporal scale. Works such as consumer aggregation, individual load forecasting, and aggregated load forecasting are introduced. We hope this book can inspire readers to define new problems, apply novel methods, and obtain interesting results with massive smart meter data or even other monitoring data in the power systems |
Beschreibung: | XXI, 293 Seiten Illustrationen, Diagramme |
ISBN: | 9789811526237 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046575146 | ||
003 | DE-604 | ||
005 | 20200519 | ||
007 | t | ||
008 | 200303s2020 a||| |||| 00||| eng d | ||
020 | |a 9789811526237 |c Print |9 978-981-15-2623-7 | ||
024 | 3 | |a 9789811526237 | |
035 | |a (OCoLC)1155069429 | ||
035 | |a (DE-599)BVBBV046575146 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
245 | 1 | 0 | |a Smart Meter Data Analytics |b Electricity Consumer Behavior Modeling, Aggregation, and Forecasting |c Yi Wang, ... |
264 | 1 | |a Singapore |b Springer, Science Press |c [2020] | |
300 | |a XXI, 293 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | |a This book aims to make the best use of fine-grained smart meter data to process and translate them into actual information and incorporated into consumer behavior modeling and distribution system operations. It begins with an overview of recent developments in smart meter data analytics. Since data management is the basis of further smart meter data analytics and its applications, three issues on data management, i.e., data compression, anomaly detection, and data generation, are subsequently studied. The following works try to model complex consumer behavior. Specific works include load profiling, pattern recognition, personalized price design, socio-demographic information identification, and household behavior coding. On this basis, the book extends consumer behavior in spatial and temporal scale. Works such as consumer aggregation, individual load forecasting, and aggregated load forecasting are introduced. We hope this book can inspire readers to define new problems, apply novel methods, and obtain interesting results with massive smart meter data or even other monitoring data in the power systems | ||
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a Energy policy | |
650 | 4 | |a Energy and state | |
650 | 4 | |a Power electronics | |
650 | 4 | |a Natural resources | |
650 | 4 | |a Energy | |
650 | 0 | 7 | |a Elektrizitätsversorgung |0 (DE-588)4014224-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verbraucherverhalten |0 (DE-588)4062644-1 |2 gnd |9 rswk-swf |
653 | |a Wärmetechnik, Energietechnik, Kraftwerktechnik | ||
689 | 0 | 0 | |a Elektrizitätsversorgung |0 (DE-588)4014224-3 |D s |
689 | 0 | 1 | |a Verbraucherverhalten |0 (DE-588)4062644-1 |D s |
689 | 0 | 2 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Wang, Yi |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-981-15-2624-4 |
999 | |a oai:aleph.bib-bvb.de:BVB01-031987032 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804181191037812736 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV046575146 |
ctrlnum | (OCoLC)1155069429 (DE-599)BVBBV046575146 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02843nam a2200505 c 4500</leader><controlfield tag="001">BV046575146</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200519 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200303s2020 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811526237</subfield><subfield code="c">Print</subfield><subfield code="9">978-981-15-2623-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9789811526237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1155069429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046575146</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Smart Meter Data Analytics</subfield><subfield code="b">Electricity Consumer Behavior Modeling, Aggregation, and Forecasting</subfield><subfield code="c">Yi Wang, ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer, Science Press</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 293 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book aims to make the best use of fine-grained smart meter data to process and translate them into actual information and incorporated into consumer behavior modeling and distribution system operations. It begins with an overview of recent developments in smart meter data analytics. Since data management is the basis of further smart meter data analytics and its applications, three issues on data management, i.e., data compression, anomaly detection, and data generation, are subsequently studied. The following works try to model complex consumer behavior. Specific works include load profiling, pattern recognition, personalized price design, socio-demographic information identification, and household behavior coding. On this basis, the book extends consumer behavior in spatial and temporal scale. Works such as consumer aggregation, individual load forecasting, and aggregated load forecasting are introduced. We hope this book can inspire readers to define new problems, apply novel methods, and obtain interesting results with massive smart meter data or even other monitoring data in the power systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy policy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy and state</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power electronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural resources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrizitätsversorgung</subfield><subfield code="0">(DE-588)4014224-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbraucherverhalten</subfield><subfield code="0">(DE-588)4062644-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Wärmetechnik, Energietechnik, Kraftwerktechnik</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektrizitätsversorgung</subfield><subfield code="0">(DE-588)4014224-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verbraucherverhalten</subfield><subfield code="0">(DE-588)4062644-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yi</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-15-2624-4</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031987032</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV046575146 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:47:43Z |
institution | BVB |
isbn | 9789811526237 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031987032 |
oclc_num | 1155069429 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | XXI, 293 Seiten Illustrationen, Diagramme |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer, Science Press |
record_format | marc |
spelling | Smart Meter Data Analytics Electricity Consumer Behavior Modeling, Aggregation, and Forecasting Yi Wang, ... Singapore Springer, Science Press [2020] XXI, 293 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier This book aims to make the best use of fine-grained smart meter data to process and translate them into actual information and incorporated into consumer behavior modeling and distribution system operations. It begins with an overview of recent developments in smart meter data analytics. Since data management is the basis of further smart meter data analytics and its applications, three issues on data management, i.e., data compression, anomaly detection, and data generation, are subsequently studied. The following works try to model complex consumer behavior. Specific works include load profiling, pattern recognition, personalized price design, socio-demographic information identification, and household behavior coding. On this basis, the book extends consumer behavior in spatial and temporal scale. Works such as consumer aggregation, individual load forecasting, and aggregated load forecasting are introduced. We hope this book can inspire readers to define new problems, apply novel methods, and obtain interesting results with massive smart meter data or even other monitoring data in the power systems bicssc bisacsh Energy policy Energy and state Power electronics Natural resources Energy Elektrizitätsversorgung (DE-588)4014224-3 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Verbraucherverhalten (DE-588)4062644-1 gnd rswk-swf Wärmetechnik, Energietechnik, Kraftwerktechnik Elektrizitätsversorgung (DE-588)4014224-3 s Verbraucherverhalten (DE-588)4062644-1 s Datenanalyse (DE-588)4123037-1 s 1\p DE-604 Wang, Yi Sonstige oth Erscheint auch als Online-Ausgabe 978-981-15-2624-4 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Smart Meter Data Analytics Electricity Consumer Behavior Modeling, Aggregation, and Forecasting bicssc bisacsh Energy policy Energy and state Power electronics Natural resources Energy Elektrizitätsversorgung (DE-588)4014224-3 gnd Datenanalyse (DE-588)4123037-1 gnd Verbraucherverhalten (DE-588)4062644-1 gnd |
subject_GND | (DE-588)4014224-3 (DE-588)4123037-1 (DE-588)4062644-1 |
title | Smart Meter Data Analytics Electricity Consumer Behavior Modeling, Aggregation, and Forecasting |
title_auth | Smart Meter Data Analytics Electricity Consumer Behavior Modeling, Aggregation, and Forecasting |
title_exact_search | Smart Meter Data Analytics Electricity Consumer Behavior Modeling, Aggregation, and Forecasting |
title_full | Smart Meter Data Analytics Electricity Consumer Behavior Modeling, Aggregation, and Forecasting Yi Wang, ... |
title_fullStr | Smart Meter Data Analytics Electricity Consumer Behavior Modeling, Aggregation, and Forecasting Yi Wang, ... |
title_full_unstemmed | Smart Meter Data Analytics Electricity Consumer Behavior Modeling, Aggregation, and Forecasting Yi Wang, ... |
title_short | Smart Meter Data Analytics |
title_sort | smart meter data analytics electricity consumer behavior modeling aggregation and forecasting |
title_sub | Electricity Consumer Behavior Modeling, Aggregation, and Forecasting |
topic | bicssc bisacsh Energy policy Energy and state Power electronics Natural resources Energy Elektrizitätsversorgung (DE-588)4014224-3 gnd Datenanalyse (DE-588)4123037-1 gnd Verbraucherverhalten (DE-588)4062644-1 gnd |
topic_facet | bicssc bisacsh Energy policy Energy and state Power electronics Natural resources Energy Elektrizitätsversorgung Datenanalyse Verbraucherverhalten |
work_keys_str_mv | AT wangyi smartmeterdataanalyticselectricityconsumerbehaviormodelingaggregationandforecasting |