Shimura varieties:
This is the second volume of a series of mainly expository articles on the arithmetic theory of automorphic forms. It forms a sequel to On the Stabilization of the Trace Formula published in 2011. The books are intended primarily for two groups of readers: those interested in the structure of automo...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2020
|
Schriftenreihe: | London Mathematical Society Lecture Note Series
457 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBA01 Volltext |
Zusammenfassung: | This is the second volume of a series of mainly expository articles on the arithmetic theory of automorphic forms. It forms a sequel to On the Stabilization of the Trace Formula published in 2011. The books are intended primarily for two groups of readers: those interested in the structure of automorphic forms on reductive groups over number fields, and specifically in qualitative information on multiplicities of automorphic representations; and those interested in the classification of I-adic representations of Galois groups of number fields. Langlands' conjectures elaborate on the notion that these two problems overlap considerably. These volumes present convincing evidence supporting this, clearly and succinctly enough that readers can pass with minimal effort between the two points of view. Over a decade's worth of progress toward the stabilization of the Arthur-Selberg trace formula, culminating in Ngo Bau Chau's proof of the Fundamental Lemma, makes this series timely |
Beschreibung: | Title from publisher's bibliographic system (viewed on 07 Feb 2020) Introduction to Volume II / T. J. Haines and M. Harris -- Lectures on Shimura varieties / A. Genestier and B.C. Ngô -- Unitary Shimura varieties / Marc-Hubert Nicole -- Integral models of Shimura varieties of PEL type / Sandra Rozensztajn -- Introduction to the Langlands-Kottwitz method / Yihang Zhu -- Integral Canonical Models of Shimura varieties : an update / Mark Kisin -- The Newton stratification / Elena Mantovan -- On the geometry of the Newton stratification / Eva Viehmann -- Construction of automorphic Galois representations : the self-dual case / Sug Woo Shin -- The local Langlands correspondence for GLn over p-adic fields, and the cohomology of compact unitary Shimura varieties / Peter Scholze -- Une application des variétés de Hecke des groupes unitaires / Gaëtan Chenevier -- A patching lemma / Claus M. Sorensen -- On subquotients of the étale cohomology of Shimura varieties / Christian Johansson and Jack A. Thorne |
Beschreibung: | 1 Online-Ressource (333 Seiten) |
ISBN: | 9781108649711 |
DOI: | 10.1017/9781108649711 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV046450664 | ||
003 | DE-604 | ||
005 | 20200316 | ||
007 | cr|uuu---uuuuu | ||
008 | 200302s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781108649711 |c Online |9 978-1-108-64971-1 | ||
024 | 7 | |a 10.1017/9781108649711 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108649711 | ||
035 | |a (OCoLC)1143791394 | ||
035 | |a (DE-599)BVBBV046450664 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.3/5 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
245 | 1 | 0 | |a Shimura varieties |c edited by Thomas Haines, Michael Harris |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (333 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society Lecture Note Series |v 457 | |
500 | |a Title from publisher's bibliographic system (viewed on 07 Feb 2020) | ||
500 | |a Introduction to Volume II / T. J. Haines and M. Harris -- Lectures on Shimura varieties / A. Genestier and B.C. Ngô -- Unitary Shimura varieties / Marc-Hubert Nicole -- Integral models of Shimura varieties of PEL type / Sandra Rozensztajn -- Introduction to the Langlands-Kottwitz method / Yihang Zhu -- Integral Canonical Models of Shimura varieties : an update / Mark Kisin -- The Newton stratification / Elena Mantovan -- On the geometry of the Newton stratification / Eva Viehmann -- Construction of automorphic Galois representations : the self-dual case / Sug Woo Shin -- The local Langlands correspondence for GLn over p-adic fields, and the cohomology of compact unitary Shimura varieties / Peter Scholze -- Une application des variétés de Hecke des groupes unitaires / Gaëtan Chenevier -- A patching lemma / Claus M. Sorensen -- On subquotients of the étale cohomology of Shimura varieties / Christian Johansson and Jack A. Thorne | ||
520 | |a This is the second volume of a series of mainly expository articles on the arithmetic theory of automorphic forms. It forms a sequel to On the Stabilization of the Trace Formula published in 2011. The books are intended primarily for two groups of readers: those interested in the structure of automorphic forms on reductive groups over number fields, and specifically in qualitative information on multiplicities of automorphic representations; and those interested in the classification of I-adic representations of Galois groups of number fields. Langlands' conjectures elaborate on the notion that these two problems overlap considerably. These volumes present convincing evidence supporting this, clearly and succinctly enough that readers can pass with minimal effort between the two points of view. Over a decade's worth of progress toward the stabilization of the Arthur-Selberg trace formula, culminating in Ngo Bau Chau's proof of the Fundamental Lemma, makes this series timely | ||
650 | 4 | |a Shimura varieties | |
650 | 4 | |a Automorphic forms | |
650 | 0 | 7 | |a Automorphe Form |0 (DE-588)4003972-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Automorphe Form |0 (DE-588)4003972-9 |D s |
689 | 0 | 1 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Haines, Thomas J. |d ca. 20./21. Jh. |0 (DE-588)1206563583 |4 edt | |
700 | 1 | |a Harris, Michael |d 1954- |0 (DE-588)1067534431 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-10870-486-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108649711 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031862617 | ||
966 | e | |u https://doi.org/10.1017/9781108649711 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108649711 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108649711 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181015133945856 |
---|---|
any_adam_object | |
author2 | Haines, Thomas J. ca. 20./21. Jh Harris, Michael 1954- |
author2_role | edt edt |
author2_variant | t j h tj tjh m h mh |
author_GND | (DE-588)1206563583 (DE-588)1067534431 |
author_facet | Haines, Thomas J. ca. 20./21. Jh Harris, Michael 1954- |
building | Verbundindex |
bvnumber | BV046450664 |
classification_rvk | SI 320 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108649711 (OCoLC)1143791394 (DE-599)BVBBV046450664 |
dewey-full | 516.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/5 |
dewey-search | 516.3/5 |
dewey-sort | 3516.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781108649711 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03976nmm a2200517 cb4500</leader><controlfield tag="001">BV046450664</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200316 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200302s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108649711</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-64971-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108649711</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108649711</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1143791394</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046450664</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shimura varieties</subfield><subfield code="c">edited by Thomas Haines, Michael Harris</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (333 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society Lecture Note Series</subfield><subfield code="v">457</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 07 Feb 2020)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction to Volume II / T. J. Haines and M. Harris -- Lectures on Shimura varieties / A. Genestier and B.C. Ngô -- Unitary Shimura varieties / Marc-Hubert Nicole -- Integral models of Shimura varieties of PEL type / Sandra Rozensztajn -- Introduction to the Langlands-Kottwitz method / Yihang Zhu -- Integral Canonical Models of Shimura varieties : an update / Mark Kisin -- The Newton stratification / Elena Mantovan -- On the geometry of the Newton stratification / Eva Viehmann -- Construction of automorphic Galois representations : the self-dual case / Sug Woo Shin -- The local Langlands correspondence for GLn over p-adic fields, and the cohomology of compact unitary Shimura varieties / Peter Scholze -- Une application des variétés de Hecke des groupes unitaires / Gaëtan Chenevier -- A patching lemma / Claus M. Sorensen -- On subquotients of the étale cohomology of Shimura varieties / Christian Johansson and Jack A. Thorne</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the second volume of a series of mainly expository articles on the arithmetic theory of automorphic forms. It forms a sequel to On the Stabilization of the Trace Formula published in 2011. The books are intended primarily for two groups of readers: those interested in the structure of automorphic forms on reductive groups over number fields, and specifically in qualitative information on multiplicities of automorphic representations; and those interested in the classification of I-adic representations of Galois groups of number fields. Langlands' conjectures elaborate on the notion that these two problems overlap considerably. These volumes present convincing evidence supporting this, clearly and succinctly enough that readers can pass with minimal effort between the two points of view. Over a decade's worth of progress toward the stabilization of the Arthur-Selberg trace formula, culminating in Ngo Bau Chau's proof of the Fundamental Lemma, makes this series timely</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shimura varieties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automorphic forms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automorphe Form</subfield><subfield code="0">(DE-588)4003972-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Automorphe Form</subfield><subfield code="0">(DE-588)4003972-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haines, Thomas J.</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1206563583</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harris, Michael</subfield><subfield code="d">1954-</subfield><subfield code="0">(DE-588)1067534431</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-10870-486-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108649711</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031862617</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108649711</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108649711</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108649711</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046450664 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:44:56Z |
institution | BVB |
isbn | 9781108649711 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031862617 |
oclc_num | 1143791394 |
open_access_boolean | |
owner | DE-384 DE-12 DE-92 |
owner_facet | DE-384 DE-12 DE-92 |
physical | 1 Online-Ressource (333 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society Lecture Note Series |
spelling | Shimura varieties edited by Thomas Haines, Michael Harris Cambridge Cambridge University Press 2020 1 Online-Ressource (333 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society Lecture Note Series 457 Title from publisher's bibliographic system (viewed on 07 Feb 2020) Introduction to Volume II / T. J. Haines and M. Harris -- Lectures on Shimura varieties / A. Genestier and B.C. Ngô -- Unitary Shimura varieties / Marc-Hubert Nicole -- Integral models of Shimura varieties of PEL type / Sandra Rozensztajn -- Introduction to the Langlands-Kottwitz method / Yihang Zhu -- Integral Canonical Models of Shimura varieties : an update / Mark Kisin -- The Newton stratification / Elena Mantovan -- On the geometry of the Newton stratification / Eva Viehmann -- Construction of automorphic Galois representations : the self-dual case / Sug Woo Shin -- The local Langlands correspondence for GLn over p-adic fields, and the cohomology of compact unitary Shimura varieties / Peter Scholze -- Une application des variétés de Hecke des groupes unitaires / Gaëtan Chenevier -- A patching lemma / Claus M. Sorensen -- On subquotients of the étale cohomology of Shimura varieties / Christian Johansson and Jack A. Thorne This is the second volume of a series of mainly expository articles on the arithmetic theory of automorphic forms. It forms a sequel to On the Stabilization of the Trace Formula published in 2011. The books are intended primarily for two groups of readers: those interested in the structure of automorphic forms on reductive groups over number fields, and specifically in qualitative information on multiplicities of automorphic representations; and those interested in the classification of I-adic representations of Galois groups of number fields. Langlands' conjectures elaborate on the notion that these two problems overlap considerably. These volumes present convincing evidence supporting this, clearly and succinctly enough that readers can pass with minimal effort between the two points of view. Over a decade's worth of progress toward the stabilization of the Arthur-Selberg trace formula, culminating in Ngo Bau Chau's proof of the Fundamental Lemma, makes this series timely Shimura varieties Automorphic forms Automorphe Form (DE-588)4003972-9 gnd rswk-swf Reduktive Gruppe (DE-588)4177313-5 gnd rswk-swf Automorphe Form (DE-588)4003972-9 s Reduktive Gruppe (DE-588)4177313-5 s DE-604 Haines, Thomas J. ca. 20./21. Jh. (DE-588)1206563583 edt Harris, Michael 1954- (DE-588)1067534431 edt Erscheint auch als Druck-Ausgabe 978-1-10870-486-1 https://doi.org/10.1017/9781108649711 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Shimura varieties Shimura varieties Automorphic forms Automorphe Form (DE-588)4003972-9 gnd Reduktive Gruppe (DE-588)4177313-5 gnd |
subject_GND | (DE-588)4003972-9 (DE-588)4177313-5 |
title | Shimura varieties |
title_auth | Shimura varieties |
title_exact_search | Shimura varieties |
title_full | Shimura varieties edited by Thomas Haines, Michael Harris |
title_fullStr | Shimura varieties edited by Thomas Haines, Michael Harris |
title_full_unstemmed | Shimura varieties edited by Thomas Haines, Michael Harris |
title_short | Shimura varieties |
title_sort | shimura varieties |
topic | Shimura varieties Automorphic forms Automorphe Form (DE-588)4003972-9 gnd Reduktive Gruppe (DE-588)4177313-5 gnd |
topic_facet | Shimura varieties Automorphic forms Automorphe Form Reduktive Gruppe |
url | https://doi.org/10.1017/9781108649711 |
work_keys_str_mv | AT hainesthomasj shimuravarieties AT harrismichael shimuravarieties |