Representations of finite groups of Lie type:
On its original publication, this book provided the first elementary treatment of representation theory of finite groups of Lie type in book form. This second edition features new material to reflect the continuous evolution of the subject, including entirely new chapters on Hecke algebras, Green fu...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2020
|
Ausgabe: | 2nd edition |
Schriftenreihe: | London Mathematical Society student texts
95 95 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBA01 Volltext |
Zusammenfassung: | On its original publication, this book provided the first elementary treatment of representation theory of finite groups of Lie type in book form. This second edition features new material to reflect the continuous evolution of the subject, including entirely new chapters on Hecke algebras, Green functions and Lusztig families. The authors cover the basic theory of representations of finite groups of Lie type, such as linear, unitary, orthogonal and symplectic groups. They emphasise the Curtis-Alvis duality map and Mackey's theorem and the results that can be deduced from it, before moving on to a discussion of Deligne-Lusztig induction and Lusztig's Jordan decomposition theorem for characters. The book contains the background information needed to make it a useful resource for beginning graduate students in algebra as well as seasoned researchers. It includes exercises and explicit examples |
Beschreibung: | Title from publisher's bibliographic system (viewed on 14 Feb 2020) |
Beschreibung: | 1 Online-Ressource (vii, 258 Seiten) |
ISBN: | 9781108673655 |
DOI: | 10.1017/9781108673655 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046450628 | ||
003 | DE-604 | ||
005 | 20200316 | ||
007 | cr|uuu---uuuuu | ||
008 | 200302s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781108673655 |c Online |9 978-1-108-67365-5 | ||
024 | 7 | |a 10.1017/9781108673655 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108673655 | ||
035 | |a (OCoLC)1143812959 | ||
035 | |a (DE-599)BVBBV046450628 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.482 | |
082 | 0 | |a 512/.55 |2 20 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Digne, François |e Verfasser |0 (DE-588)1130806057 |4 aut | |
245 | 1 | 0 | |a Representations of finite groups of Lie type |c François Digne and Jean Michel |
250 | |a 2nd edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (vii, 258 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts |v 95 | |
490 | 0 | |a 95 | |
500 | |a Title from publisher's bibliographic system (viewed on 14 Feb 2020) | ||
520 | |a On its original publication, this book provided the first elementary treatment of representation theory of finite groups of Lie type in book form. This second edition features new material to reflect the continuous evolution of the subject, including entirely new chapters on Hecke algebras, Green functions and Lusztig families. The authors cover the basic theory of representations of finite groups of Lie type, such as linear, unitary, orthogonal and symplectic groups. They emphasise the Curtis-Alvis duality map and Mackey's theorem and the results that can be deduced from it, before moving on to a discussion of Deligne-Lusztig induction and Lusztig's Jordan decomposition theorem for characters. The book contains the background information needed to make it a useful resource for beginning graduate students in algebra as well as seasoned researchers. It includes exercises and explicit examples | ||
650 | 4 | |a Lie groups | |
650 | 4 | |a Representations of groups | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Representations of groups | |
650 | 0 | 7 | |a Endliche Gruppe |0 (DE-588)4014651-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Typ-Gruppe |0 (DE-588)4167650-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 0 | 1 | |a Lie-Typ-Gruppe |0 (DE-588)4167650-6 |D s |
689 | 0 | 2 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Michel, Jean |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1050184939 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-10848-148-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108673655 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031862579 | ||
966 | e | |u https://doi.org/10.1017/9781108673655 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108673655 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108673655 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181015075225600 |
---|---|
any_adam_object | |
author | Digne, François Michel, Jean ca. 20./21. Jh |
author_GND | (DE-588)1130806057 (DE-588)1050184939 |
author_facet | Digne, François Michel, Jean ca. 20./21. Jh |
author_role | aut aut |
author_sort | Digne, François |
author_variant | f d fd j m jm |
building | Verbundindex |
bvnumber | BV046450628 |
classification_rvk | SK 340 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108673655 (OCoLC)1143812959 (DE-599)BVBBV046450628 |
dewey-full | 512/.482 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.482 512/.55 |
dewey-search | 512/.482 512/.55 |
dewey-sort | 3512 3482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781108673655 |
edition | 2nd edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03415nmm a2200637zcb4500</leader><controlfield tag="001">BV046450628</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200316 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200302s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108673655</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-67365-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108673655</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108673655</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1143812959</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046450628</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.482</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Digne, François</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1130806057</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representations of finite groups of Lie type</subfield><subfield code="c">François Digne and Jean Michel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 258 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">95</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">95</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 14 Feb 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">On its original publication, this book provided the first elementary treatment of representation theory of finite groups of Lie type in book form. This second edition features new material to reflect the continuous evolution of the subject, including entirely new chapters on Hecke algebras, Green functions and Lusztig families. The authors cover the basic theory of representations of finite groups of Lie type, such as linear, unitary, orthogonal and symplectic groups. They emphasise the Curtis-Alvis duality map and Mackey's theorem and the results that can be deduced from it, before moving on to a discussion of Deligne-Lusztig induction and Lusztig's Jordan decomposition theorem for characters. The book contains the background information needed to make it a useful resource for beginning graduate students in algebra as well as seasoned researchers. It includes exercises and explicit examples</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Typ-Gruppe</subfield><subfield code="0">(DE-588)4167650-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Typ-Gruppe</subfield><subfield code="0">(DE-588)4167650-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michel, Jean</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1050184939</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-10848-148-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108673655</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031862579</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108673655</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108673655</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108673655</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046450628 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:44:56Z |
institution | BVB |
isbn | 9781108673655 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031862579 |
oclc_num | 1143812959 |
open_access_boolean | |
owner | DE-384 DE-12 DE-92 |
owner_facet | DE-384 DE-12 DE-92 |
physical | 1 Online-Ressource (vii, 258 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts 95 |
spelling | Digne, François Verfasser (DE-588)1130806057 aut Representations of finite groups of Lie type François Digne and Jean Michel 2nd edition Cambridge Cambridge University Press 2020 1 Online-Ressource (vii, 258 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 95 95 Title from publisher's bibliographic system (viewed on 14 Feb 2020) On its original publication, this book provided the first elementary treatment of representation theory of finite groups of Lie type in book form. This second edition features new material to reflect the continuous evolution of the subject, including entirely new chapters on Hecke algebras, Green functions and Lusztig families. The authors cover the basic theory of representations of finite groups of Lie type, such as linear, unitary, orthogonal and symplectic groups. They emphasise the Curtis-Alvis duality map and Mackey's theorem and the results that can be deduced from it, before moving on to a discussion of Deligne-Lusztig induction and Lusztig's Jordan decomposition theorem for characters. The book contains the background information needed to make it a useful resource for beginning graduate students in algebra as well as seasoned researchers. It includes exercises and explicit examples Lie groups Representations of groups Endliche Gruppe (DE-588)4014651-0 gnd rswk-swf Darstellung Mathematik (DE-588)4128289-9 gnd rswk-swf Lie-Typ-Gruppe (DE-588)4167650-6 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Endliche Gruppe (DE-588)4014651-0 s Lie-Typ-Gruppe (DE-588)4167650-6 s Darstellung Mathematik (DE-588)4128289-9 s DE-604 Lie-Gruppe (DE-588)4035695-4 s Michel, Jean ca. 20./21. Jh. Verfasser (DE-588)1050184939 aut Erscheint auch als Druck-Ausgabe 978-1-10848-148-9 Erscheint auch als Druck-Ausgabe https://doi.org/10.1017/9781108673655 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Digne, François Michel, Jean ca. 20./21. Jh Representations of finite groups of Lie type Lie groups Representations of groups Endliche Gruppe (DE-588)4014651-0 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Lie-Typ-Gruppe (DE-588)4167650-6 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
subject_GND | (DE-588)4014651-0 (DE-588)4128289-9 (DE-588)4167650-6 (DE-588)4035695-4 |
title | Representations of finite groups of Lie type |
title_auth | Representations of finite groups of Lie type |
title_exact_search | Representations of finite groups of Lie type |
title_full | Representations of finite groups of Lie type François Digne and Jean Michel |
title_fullStr | Representations of finite groups of Lie type François Digne and Jean Michel |
title_full_unstemmed | Representations of finite groups of Lie type François Digne and Jean Michel |
title_short | Representations of finite groups of Lie type |
title_sort | representations of finite groups of lie type |
topic | Lie groups Representations of groups Endliche Gruppe (DE-588)4014651-0 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Lie-Typ-Gruppe (DE-588)4167650-6 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
topic_facet | Lie groups Representations of groups Endliche Gruppe Darstellung Mathematik Lie-Typ-Gruppe Lie-Gruppe |
url | https://doi.org/10.1017/9781108673655 |
work_keys_str_mv | AT dignefrancois representationsoffinitegroupsoflietype AT micheljean representationsoffinitegroupsoflietype |