Bimonoids for hyperplane arrangements:
The goal of this monograph is to develop Hopf theory in a new setting which features centrally a real hyperplane arrangement. The new theory is parallel to the classical theory of connected Hopf algebras, and relates to it when specialized to the braid arrangement. Joyal's theory of combinatori...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore
Cambridge University Press
2020
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
173 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 TUM01 TUM02 UBA01 Volltext |
Zusammenfassung: | The goal of this monograph is to develop Hopf theory in a new setting which features centrally a real hyperplane arrangement. The new theory is parallel to the classical theory of connected Hopf algebras, and relates to it when specialized to the braid arrangement. Joyal's theory of combinatorial species, ideas from Tits' theory of buildings, and Rota's work on incidence algebras inspire and find a common expression in this theory. The authors introduce notions of monoid, comonoid, bimonoid, and Lie monoid relative to a fixed hyperplane arrangement. They also construct universal bimonoids by using generalizations of the classical notions of shuffle and quasishuffle, and establish the Borel-Hopf, Poincaré-Birkhoff-Witt, and Cartier-Milnor-Moore theorems in this setting. This monograph opens a vast new area of research. It will be of interest to students and researchers working in the areas of hyperplane arrangements, semigroup theory, Hopf algebras, algebraic Lie theory, operads, and category theory |
Beschreibung: | Title from publisher's bibliographic system (viewed on 28 Feb 2020) |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781108863117 |
DOI: | 10.1017/9781108863117 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV046450621 | ||
003 | DE-604 | ||
005 | 20220518 | ||
007 | cr|uuu---uuuuu | ||
008 | 200302s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781108863117 |c Online |9 978-1-108-86311-7 | ||
024 | 7 | |a 10.1017/9781108863117 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108863117 | ||
035 | |a (OCoLC)1143808696 | ||
035 | |a (DE-599)BVBBV046450621 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-12 |a DE-92 |a DE-91G | ||
082 | 0 | |a 516/.11 | |
084 | |a MAT 169 |2 stub | ||
100 | 1 | |a Aguiar, Marcelo |d 1968- |e Verfasser |0 (DE-588)143265873 |4 aut | |
245 | 1 | 0 | |a Bimonoids for hyperplane arrangements |c Marcelo Aguiar (Cornell University, Ithaca), Swapneel Mahajan (Indian Institute of Technology, Mumbai) |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications |v 173 | |
500 | |a Title from publisher's bibliographic system (viewed on 28 Feb 2020) | ||
520 | |a The goal of this monograph is to develop Hopf theory in a new setting which features centrally a real hyperplane arrangement. The new theory is parallel to the classical theory of connected Hopf algebras, and relates to it when specialized to the braid arrangement. Joyal's theory of combinatorial species, ideas from Tits' theory of buildings, and Rota's work on incidence algebras inspire and find a common expression in this theory. The authors introduce notions of monoid, comonoid, bimonoid, and Lie monoid relative to a fixed hyperplane arrangement. They also construct universal bimonoids by using generalizations of the classical notions of shuffle and quasishuffle, and establish the Borel-Hopf, Poincaré-Birkhoff-Witt, and Cartier-Milnor-Moore theorems in this setting. This monograph opens a vast new area of research. It will be of interest to students and researchers working in the areas of hyperplane arrangements, semigroup theory, Hopf algebras, algebraic Lie theory, operads, and category theory | ||
650 | 4 | |a Incidence algebras | |
650 | 4 | |a Algebraic spaces | |
650 | 4 | |a Hyperspace | |
650 | 4 | |a Geometry, Plane | |
650 | 0 | 7 | |a Monoidale Kategorie |0 (DE-588)4170466-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperebene |0 (DE-588)4161050-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hopf-Algebra |0 (DE-588)4160646-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperebene |0 (DE-588)4161050-7 |D s |
689 | 0 | 1 | |a Hopf-Algebra |0 (DE-588)4160646-2 |D s |
689 | 0 | 2 | |a Monoidale Kategorie |0 (DE-588)4170466-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Mahajan, Swapneel |d 1974- |e Verfasser |0 (DE-588)143265970 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-108-49580-6 |
830 | 0 | |a Encyclopedia of mathematics and its applications |v 173 |w (DE-604)BV044777929 |9 173 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108863117 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031862572 | ||
966 | e | |u https://doi.org/10.1017/9781108863117 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108863117 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108863117 |l TUM01 |p ZDB-20-CBO |q TUM_Einzelkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108863117 |l TUM02 |p ZDB-20-CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108863117 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181015063691264 |
---|---|
any_adam_object | |
author | Aguiar, Marcelo 1968- Mahajan, Swapneel 1974- |
author_GND | (DE-588)143265873 (DE-588)143265970 |
author_facet | Aguiar, Marcelo 1968- Mahajan, Swapneel 1974- |
author_role | aut aut |
author_sort | Aguiar, Marcelo 1968- |
author_variant | m a ma s m sm |
building | Verbundindex |
bvnumber | BV046450621 |
classification_tum | MAT 169 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108863117 (OCoLC)1143808696 (DE-599)BVBBV046450621 |
dewey-full | 516/.11 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516/.11 |
dewey-search | 516/.11 |
dewey-sort | 3516 211 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781108863117 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03684nmm a2200589 cb4500</leader><controlfield tag="001">BV046450621</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220518 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200302s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108863117</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-86311-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108863117</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108863117</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1143808696</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046450621</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516/.11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 169</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aguiar, Marcelo</subfield><subfield code="d">1968-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143265873</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bimonoids for hyperplane arrangements</subfield><subfield code="c">Marcelo Aguiar (Cornell University, Ithaca), Swapneel Mahajan (Indian Institute of Technology, Mumbai)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">173</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 28 Feb 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The goal of this monograph is to develop Hopf theory in a new setting which features centrally a real hyperplane arrangement. The new theory is parallel to the classical theory of connected Hopf algebras, and relates to it when specialized to the braid arrangement. Joyal's theory of combinatorial species, ideas from Tits' theory of buildings, and Rota's work on incidence algebras inspire and find a common expression in this theory. The authors introduce notions of monoid, comonoid, bimonoid, and Lie monoid relative to a fixed hyperplane arrangement. They also construct universal bimonoids by using generalizations of the classical notions of shuffle and quasishuffle, and establish the Borel-Hopf, Poincaré-Birkhoff-Witt, and Cartier-Milnor-Moore theorems in this setting. This monograph opens a vast new area of research. It will be of interest to students and researchers working in the areas of hyperplane arrangements, semigroup theory, Hopf algebras, algebraic Lie theory, operads, and category theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incidence algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperspace</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Plane</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monoidale Kategorie</subfield><subfield code="0">(DE-588)4170466-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperebene</subfield><subfield code="0">(DE-588)4161050-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hopf-Algebra</subfield><subfield code="0">(DE-588)4160646-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperebene</subfield><subfield code="0">(DE-588)4161050-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hopf-Algebra</subfield><subfield code="0">(DE-588)4160646-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Monoidale Kategorie</subfield><subfield code="0">(DE-588)4170466-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahajan, Swapneel</subfield><subfield code="d">1974-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143265970</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-108-49580-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">173</subfield><subfield code="w">(DE-604)BV044777929</subfield><subfield code="9">173</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108863117</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031862572</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108863117</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108863117</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108863117</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108863117</subfield><subfield code="l">TUM02</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108863117</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046450621 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:44:56Z |
institution | BVB |
isbn | 9781108863117 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031862572 |
oclc_num | 1143808696 |
open_access_boolean | |
owner | DE-384 DE-12 DE-92 DE-91G DE-BY-TUM |
owner_facet | DE-384 DE-12 DE-92 DE-91G DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO TUM_Einzelkauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series | Encyclopedia of mathematics and its applications |
series2 | Encyclopedia of mathematics and its applications |
spelling | Aguiar, Marcelo 1968- Verfasser (DE-588)143265873 aut Bimonoids for hyperplane arrangements Marcelo Aguiar (Cornell University, Ithaca), Swapneel Mahajan (Indian Institute of Technology, Mumbai) Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore Cambridge University Press 2020 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications 173 Title from publisher's bibliographic system (viewed on 28 Feb 2020) The goal of this monograph is to develop Hopf theory in a new setting which features centrally a real hyperplane arrangement. The new theory is parallel to the classical theory of connected Hopf algebras, and relates to it when specialized to the braid arrangement. Joyal's theory of combinatorial species, ideas from Tits' theory of buildings, and Rota's work on incidence algebras inspire and find a common expression in this theory. The authors introduce notions of monoid, comonoid, bimonoid, and Lie monoid relative to a fixed hyperplane arrangement. They also construct universal bimonoids by using generalizations of the classical notions of shuffle and quasishuffle, and establish the Borel-Hopf, Poincaré-Birkhoff-Witt, and Cartier-Milnor-Moore theorems in this setting. This monograph opens a vast new area of research. It will be of interest to students and researchers working in the areas of hyperplane arrangements, semigroup theory, Hopf algebras, algebraic Lie theory, operads, and category theory Incidence algebras Algebraic spaces Hyperspace Geometry, Plane Monoidale Kategorie (DE-588)4170466-6 gnd rswk-swf Hyperebene (DE-588)4161050-7 gnd rswk-swf Hopf-Algebra (DE-588)4160646-2 gnd rswk-swf Hyperebene (DE-588)4161050-7 s Hopf-Algebra (DE-588)4160646-2 s Monoidale Kategorie (DE-588)4170466-6 s DE-604 Mahajan, Swapneel 1974- Verfasser (DE-588)143265970 aut Erscheint auch als Druck-Ausgabe, Hardcover 978-1-108-49580-6 Encyclopedia of mathematics and its applications 173 (DE-604)BV044777929 173 https://doi.org/10.1017/9781108863117 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Aguiar, Marcelo 1968- Mahajan, Swapneel 1974- Bimonoids for hyperplane arrangements Encyclopedia of mathematics and its applications Incidence algebras Algebraic spaces Hyperspace Geometry, Plane Monoidale Kategorie (DE-588)4170466-6 gnd Hyperebene (DE-588)4161050-7 gnd Hopf-Algebra (DE-588)4160646-2 gnd |
subject_GND | (DE-588)4170466-6 (DE-588)4161050-7 (DE-588)4160646-2 |
title | Bimonoids for hyperplane arrangements |
title_auth | Bimonoids for hyperplane arrangements |
title_exact_search | Bimonoids for hyperplane arrangements |
title_full | Bimonoids for hyperplane arrangements Marcelo Aguiar (Cornell University, Ithaca), Swapneel Mahajan (Indian Institute of Technology, Mumbai) |
title_fullStr | Bimonoids for hyperplane arrangements Marcelo Aguiar (Cornell University, Ithaca), Swapneel Mahajan (Indian Institute of Technology, Mumbai) |
title_full_unstemmed | Bimonoids for hyperplane arrangements Marcelo Aguiar (Cornell University, Ithaca), Swapneel Mahajan (Indian Institute of Technology, Mumbai) |
title_short | Bimonoids for hyperplane arrangements |
title_sort | bimonoids for hyperplane arrangements |
topic | Incidence algebras Algebraic spaces Hyperspace Geometry, Plane Monoidale Kategorie (DE-588)4170466-6 gnd Hyperebene (DE-588)4161050-7 gnd Hopf-Algebra (DE-588)4160646-2 gnd |
topic_facet | Incidence algebras Algebraic spaces Hyperspace Geometry, Plane Monoidale Kategorie Hyperebene Hopf-Algebra |
url | https://doi.org/10.1017/9781108863117 |
volume_link | (DE-604)BV044777929 |
work_keys_str_mv | AT aguiarmarcelo bimonoidsforhyperplanearrangements AT mahajanswapneel bimonoidsforhyperplanearrangements |