Wigner-type theorems for Hilbert Grassmannians:
Wigner's theorem is a fundamental part of the mathematical formulation of quantum mechanics. The theorem characterizes unitary and anti-unitary operators as symmetries of quantum mechanical systems, and is a key result when relating preserver problems to quantum mechanics. At the heart of this...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York, NY
Cambridge University Press
2020
|
Schriftenreihe: | London Mathematical Society lecture note series
460 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBA01 Volltext |
Zusammenfassung: | Wigner's theorem is a fundamental part of the mathematical formulation of quantum mechanics. The theorem characterizes unitary and anti-unitary operators as symmetries of quantum mechanical systems, and is a key result when relating preserver problems to quantum mechanics. At the heart of this book is a geometric approach to Wigner-type theorems, unifying both classical and more recent results. Readers are initiated in a wide range of topics from geometric transformations of Grassmannians to lattices of closed subspaces, before moving on to a discussion of applications. An introduction to all the key aspects of the basic theory is included as are plenty of examples, making this book a useful resource for beginning graduate students and non-experts, as well as a helpful reference for specialist researchers |
Beschreibung: | Title from publisher's bibliographic system (viewed on 15 Jan 2020) |
Beschreibung: | 1 Online-Ressource (vii, 145 Seiten) |
ISBN: | 9781108800327 |
DOI: | 10.1017/9781108800327 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046437809 | ||
003 | DE-604 | ||
005 | 20210615 | ||
007 | cr|uuu---uuuuu | ||
008 | 200224s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781108800327 |9 978-1-108-80032-7 | ||
024 | 7 | |a 10.1017/9781108800327 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108800327 | ||
035 | |a (OCoLC)1140122677 | ||
035 | |a (DE-599)BVBBV046437809 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-384 | ||
082 | 0 | |a 515.733 | |
100 | 1 | |a Pankov, Mark |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1033189499 |4 aut | |
245 | 1 | 0 | |a Wigner-type theorems for Hilbert Grassmannians |c Mark Pankov |
264 | 1 | |a Cambridge ; New York, NY |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (vii, 145 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 460 | |
500 | |a Title from publisher's bibliographic system (viewed on 15 Jan 2020) | ||
520 | |a Wigner's theorem is a fundamental part of the mathematical formulation of quantum mechanics. The theorem characterizes unitary and anti-unitary operators as symmetries of quantum mechanical systems, and is a key result when relating preserver problems to quantum mechanics. At the heart of this book is a geometric approach to Wigner-type theorems, unifying both classical and more recent results. Readers are initiated in a wide range of topics from geometric transformations of Grassmannians to lattices of closed subspaces, before moving on to a discussion of applications. An introduction to all the key aspects of the basic theory is included as are plenty of examples, making this book a useful resource for beginning graduate students and non-experts, as well as a helpful reference for specialist researchers | ||
650 | 4 | |a Hilbert space | |
650 | 4 | |a Grassmann manifolds | |
650 | 4 | |a Geometry, Projective | |
650 | 4 | |a Quantum theory / Mathematics | |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graßmann-Mannigfaltigkeit |0 (DE-588)4158085-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hilbert-Raum |0 (DE-588)4159850-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | 1 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 0 | 2 | |a Graßmann-Mannigfaltigkeit |0 (DE-588)4158085-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-79091-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108800327 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031849907 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/9781108800327 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108800327 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108800327 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180994081685504 |
---|---|
any_adam_object | |
author | Pankov, Mark ca. 20./21. Jh |
author_GND | (DE-588)1033189499 |
author_facet | Pankov, Mark ca. 20./21. Jh |
author_role | aut |
author_sort | Pankov, Mark ca. 20./21. Jh |
author_variant | m p mp |
building | Verbundindex |
bvnumber | BV046437809 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108800327 (OCoLC)1140122677 (DE-599)BVBBV046437809 |
dewey-full | 515.733 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.733 |
dewey-search | 515.733 |
dewey-sort | 3515.733 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781108800327 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03053nmm a2200541zcb4500</leader><controlfield tag="001">BV046437809</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210615 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200224s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108800327</subfield><subfield code="9">978-1-108-80032-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108800327</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108800327</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1140122677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046437809</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.733</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pankov, Mark</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1033189499</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wigner-type theorems for Hilbert Grassmannians</subfield><subfield code="c">Mark Pankov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 145 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">460</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 15 Jan 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wigner's theorem is a fundamental part of the mathematical formulation of quantum mechanics. The theorem characterizes unitary and anti-unitary operators as symmetries of quantum mechanical systems, and is a key result when relating preserver problems to quantum mechanics. At the heart of this book is a geometric approach to Wigner-type theorems, unifying both classical and more recent results. Readers are initiated in a wide range of topics from geometric transformations of Grassmannians to lattices of closed subspaces, before moving on to a discussion of applications. An introduction to all the key aspects of the basic theory is included as are plenty of examples, making this book a useful resource for beginning graduate students and non-experts, as well as a helpful reference for specialist researchers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grassmann manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Projective</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory / Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graßmann-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4158085-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Graßmann-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4158085-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-79091-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108800327</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031849907</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108800327</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108800327</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108800327</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046437809 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:44:36Z |
institution | BVB |
isbn | 9781108800327 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031849907 |
oclc_num | 1140122677 |
open_access_boolean | |
owner | DE-12 DE-92 DE-384 |
owner_facet | DE-12 DE-92 DE-384 |
physical | 1 Online-Ressource (vii, 145 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Pankov, Mark ca. 20./21. Jh. Verfasser (DE-588)1033189499 aut Wigner-type theorems for Hilbert Grassmannians Mark Pankov Cambridge ; New York, NY Cambridge University Press 2020 1 Online-Ressource (vii, 145 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 460 Title from publisher's bibliographic system (viewed on 15 Jan 2020) Wigner's theorem is a fundamental part of the mathematical formulation of quantum mechanics. The theorem characterizes unitary and anti-unitary operators as symmetries of quantum mechanical systems, and is a key result when relating preserver problems to quantum mechanics. At the heart of this book is a geometric approach to Wigner-type theorems, unifying both classical and more recent results. Readers are initiated in a wide range of topics from geometric transformations of Grassmannians to lattices of closed subspaces, before moving on to a discussion of applications. An introduction to all the key aspects of the basic theory is included as are plenty of examples, making this book a useful resource for beginning graduate students and non-experts, as well as a helpful reference for specialist researchers Hilbert space Grassmann manifolds Geometry, Projective Quantum theory / Mathematics Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Graßmann-Mannigfaltigkeit (DE-588)4158085-0 gnd rswk-swf Hilbert-Raum (DE-588)4159850-7 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 s Hilbert-Raum (DE-588)4159850-7 s Graßmann-Mannigfaltigkeit (DE-588)4158085-0 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 978-1-108-79091-8 https://doi.org/10.1017/9781108800327 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pankov, Mark ca. 20./21. Jh Wigner-type theorems for Hilbert Grassmannians Hilbert space Grassmann manifolds Geometry, Projective Quantum theory / Mathematics Quantenmechanik (DE-588)4047989-4 gnd Graßmann-Mannigfaltigkeit (DE-588)4158085-0 gnd Hilbert-Raum (DE-588)4159850-7 gnd |
subject_GND | (DE-588)4047989-4 (DE-588)4158085-0 (DE-588)4159850-7 |
title | Wigner-type theorems for Hilbert Grassmannians |
title_auth | Wigner-type theorems for Hilbert Grassmannians |
title_exact_search | Wigner-type theorems for Hilbert Grassmannians |
title_full | Wigner-type theorems for Hilbert Grassmannians Mark Pankov |
title_fullStr | Wigner-type theorems for Hilbert Grassmannians Mark Pankov |
title_full_unstemmed | Wigner-type theorems for Hilbert Grassmannians Mark Pankov |
title_short | Wigner-type theorems for Hilbert Grassmannians |
title_sort | wigner type theorems for hilbert grassmannians |
topic | Hilbert space Grassmann manifolds Geometry, Projective Quantum theory / Mathematics Quantenmechanik (DE-588)4047989-4 gnd Graßmann-Mannigfaltigkeit (DE-588)4158085-0 gnd Hilbert-Raum (DE-588)4159850-7 gnd |
topic_facet | Hilbert space Grassmann manifolds Geometry, Projective Quantum theory / Mathematics Quantenmechanik Graßmann-Mannigfaltigkeit Hilbert-Raum |
url | https://doi.org/10.1017/9781108800327 |
work_keys_str_mv | AT pankovmark wignertypetheoremsforhilbertgrassmannians |