Consistency Conditions, Compressed Sensing and Machine Learning for Limited Angle Tomography:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Erlangen ; Nürnberg
2020
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext Volltext |
Beschreibung: | 1 Online-Ressource (III, 183 Seiten) Illustrationen, Diagramme |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046437714 | ||
003 | DE-604 | ||
005 | 20200616 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 200224s2020 gw |||| o||u| ||||||eng d | ||
015 | |a 20,O03 |2 dnb | ||
024 | 7 | |a urn:nbn:de:bvb:29-opus4-132033 |2 urn | |
035 | |a (OCoLC)1142706941 | ||
035 | |a (DE-599)DNB1205157581 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |a 006.31 |2 sdnb | ||
084 | |a 004 |2 sdnb | ||
100 | 1 | |a Huang, Yixing |e Verfasser |0 (DE-588)1205270884 |4 aut | |
245 | 1 | 0 | |a Consistency Conditions, Compressed Sensing and Machine Learning for Limited Angle Tomography |c vorgelegt von Yixing Huang |
246 | 1 | 3 | |a Konsistenzbedingungen, Compressed Sensing und maschinelles Lernen für die Tomographie mit begrenztem Winkel |
264 | 1 | |a Erlangen ; Nürnberg |c 2020 | |
300 | |a 1 Online-Ressource (III, 183 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |b Dissertation |c Friedrich-Alexander-Universität Erlangen-Nürnberg |d 2020 | ||
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |5 DE-101 |2 pdager | |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tomografie |0 (DE-588)4078351-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komprimierte Abtastung |0 (DE-588)1036377245 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konsistenz |g Informatik |0 (DE-588)4214306-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |8 1\p |a Tomography |0 http://id.loc.gov/authorities/subjects/sh85135955 |2 lcsh |
650 | 0 | 7 | |8 2\p |a Machine learning |0 http://id.loc.gov/authorities/subjects/sh85079324 |2 lcsh |
653 | |a limited angle tomography | ||
653 | |a machine learning | ||
653 | |a deep learning | ||
653 | |a compressed sensing | ||
653 | |a data consistency conditions | ||
653 | |a deep learning robustness | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Tomografie |0 (DE-588)4078351-0 |D s |
689 | 0 | 2 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | 3 | |a Komprimierte Abtastung |0 (DE-588)1036377245 |D s |
689 | 0 | 4 | |a Konsistenz |g Informatik |0 (DE-588)4214306-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 0 | |u https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-132033 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://d-nb.info/1205157581/34 |x Langzeitarchivierung Nationalbibliothek |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://open.fau.de/handle/openfau/13203 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031849813 | ||
883 | 0 | |8 1\p |a maschinell gebildet |c 0,05227 |d 20200222 |q DE-101 | |
883 | 0 | |8 2\p |a maschinell gebildet |c 0,04286 |d 20200222 |q DE-101 |
Datensatz im Suchindex
_version_ | 1804180993934884864 |
---|---|
any_adam_object | |
author | Huang, Yixing |
author_GND | (DE-588)1205270884 |
author_facet | Huang, Yixing |
author_role | aut |
author_sort | Huang, Yixing |
author_variant | y h yh |
building | Verbundindex |
bvnumber | BV046437714 |
collection | ebook |
ctrlnum | (OCoLC)1142706941 (DE-599)DNB1205157581 |
discipline | Informatik |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03018nmm a2200661zc 4500</leader><controlfield tag="001">BV046437714</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200616 </controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200224s2020 gw |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20,O03</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:bvb:29-opus4-132033</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1142706941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1205157581</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">006.31</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Yixing</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1205270884</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Consistency Conditions, Compressed Sensing and Machine Learning for Limited Angle Tomography</subfield><subfield code="c">vorgelegt von Yixing Huang</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Konsistenzbedingungen, Compressed Sensing und maschinelles Lernen für die Tomographie mit begrenztem Winkel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Erlangen ; Nürnberg</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (III, 183 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Friedrich-Alexander-Universität Erlangen-Nürnberg</subfield><subfield code="d">2020</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="5">DE-101</subfield><subfield code="2">pdager</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tomografie</subfield><subfield code="0">(DE-588)4078351-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komprimierte Abtastung</subfield><subfield code="0">(DE-588)1036377245</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konsistenz</subfield><subfield code="g">Informatik</subfield><subfield code="0">(DE-588)4214306-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">1\p</subfield><subfield code="a">Tomography</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85135955</subfield><subfield code="2">lcsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">2\p</subfield><subfield code="a">Machine learning</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield><subfield code="2">lcsh</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">limited angle tomography</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">deep learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">compressed sensing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">data consistency conditions</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">deep learning robustness</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Tomografie</subfield><subfield code="0">(DE-588)4078351-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Komprimierte Abtastung</subfield><subfield code="0">(DE-588)1036377245</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Konsistenz</subfield><subfield code="g">Informatik</subfield><subfield code="0">(DE-588)4214306-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-132033</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://d-nb.info/1205157581/34</subfield><subfield code="x">Langzeitarchivierung Nationalbibliothek</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://open.fau.de/handle/openfau/13203</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031849813</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">maschinell gebildet</subfield><subfield code="c">0,05227</subfield><subfield code="d">20200222</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">maschinell gebildet</subfield><subfield code="c">0,04286</subfield><subfield code="d">20200222</subfield><subfield code="q">DE-101</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV046437714 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:44:36Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031849813 |
oclc_num | 1142706941 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | 1 Online-Ressource (III, 183 Seiten) Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
record_format | marc |
spelling | Huang, Yixing Verfasser (DE-588)1205270884 aut Consistency Conditions, Compressed Sensing and Machine Learning for Limited Angle Tomography vorgelegt von Yixing Huang Konsistenzbedingungen, Compressed Sensing und maschinelles Lernen für die Tomographie mit begrenztem Winkel Erlangen ; Nürnberg 2020 1 Online-Ressource (III, 183 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Dissertation Friedrich-Alexander-Universität Erlangen-Nürnberg 2020 Archivierung/Langzeitarchivierung gewährleistet DE-101 pdager Deep learning (DE-588)1135597375 gnd rswk-swf Tomografie (DE-588)4078351-0 gnd rswk-swf Komprimierte Abtastung (DE-588)1036377245 gnd rswk-swf Konsistenz Informatik (DE-588)4214306-8 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf 1\p Tomography http://id.loc.gov/authorities/subjects/sh85135955 lcsh 2\p Machine learning http://id.loc.gov/authorities/subjects/sh85079324 lcsh limited angle tomography machine learning deep learning compressed sensing data consistency conditions deep learning robustness (DE-588)4113937-9 Hochschulschrift gnd-content Maschinelles Lernen (DE-588)4193754-5 s Tomografie (DE-588)4078351-0 s Deep learning (DE-588)1135597375 s Komprimierte Abtastung (DE-588)1036377245 s Konsistenz Informatik (DE-588)4214306-8 s DE-604 https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-132033 Resolving-System kostenfrei Volltext https://d-nb.info/1205157581/34 Langzeitarchivierung Nationalbibliothek kostenfrei Volltext https://open.fau.de/handle/openfau/13203 Verlag kostenfrei Volltext 1\p maschinell gebildet 0,05227 20200222 DE-101 2\p maschinell gebildet 0,04286 20200222 DE-101 |
spellingShingle | Huang, Yixing Consistency Conditions, Compressed Sensing and Machine Learning for Limited Angle Tomography Deep learning (DE-588)1135597375 gnd Tomografie (DE-588)4078351-0 gnd Komprimierte Abtastung (DE-588)1036377245 gnd Konsistenz Informatik (DE-588)4214306-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd 1\p Tomography http://id.loc.gov/authorities/subjects/sh85135955 lcsh 2\p Machine learning http://id.loc.gov/authorities/subjects/sh85079324 lcsh |
subject_GND | (DE-588)1135597375 (DE-588)4078351-0 (DE-588)1036377245 (DE-588)4214306-8 (DE-588)4193754-5 http://id.loc.gov/authorities/subjects/sh85135955 http://id.loc.gov/authorities/subjects/sh85079324 (DE-588)4113937-9 |
title | Consistency Conditions, Compressed Sensing and Machine Learning for Limited Angle Tomography |
title_alt | Konsistenzbedingungen, Compressed Sensing und maschinelles Lernen für die Tomographie mit begrenztem Winkel |
title_auth | Consistency Conditions, Compressed Sensing and Machine Learning for Limited Angle Tomography |
title_exact_search | Consistency Conditions, Compressed Sensing and Machine Learning for Limited Angle Tomography |
title_full | Consistency Conditions, Compressed Sensing and Machine Learning for Limited Angle Tomography vorgelegt von Yixing Huang |
title_fullStr | Consistency Conditions, Compressed Sensing and Machine Learning for Limited Angle Tomography vorgelegt von Yixing Huang |
title_full_unstemmed | Consistency Conditions, Compressed Sensing and Machine Learning for Limited Angle Tomography vorgelegt von Yixing Huang |
title_short | Consistency Conditions, Compressed Sensing and Machine Learning for Limited Angle Tomography |
title_sort | consistency conditions compressed sensing and machine learning for limited angle tomography |
topic | Deep learning (DE-588)1135597375 gnd Tomografie (DE-588)4078351-0 gnd Komprimierte Abtastung (DE-588)1036377245 gnd Konsistenz Informatik (DE-588)4214306-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd 1\p Tomography http://id.loc.gov/authorities/subjects/sh85135955 lcsh 2\p Machine learning http://id.loc.gov/authorities/subjects/sh85079324 lcsh |
topic_facet | Deep learning Tomografie Komprimierte Abtastung Konsistenz Informatik Maschinelles Lernen Tomography Machine learning Hochschulschrift |
url | https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-132033 https://d-nb.info/1205157581/34 https://open.fau.de/handle/openfau/13203 |
work_keys_str_mv | AT huangyixing consistencyconditionscompressedsensingandmachinelearningforlimitedangletomography AT huangyixing konsistenzbedingungencompressedsensingundmaschinelleslernenfurdietomographiemitbegrenztemwinkel |