Keras to Kubernetes: the journey of a machine learning model to production
Build a Keras model to scale and deploy on a Kubernetes cluster. We have seen an exponential growth in the use of Artificial Intelligence (AI) over last few years. AI is becoming the new electricity and is touching every industry from retail to manufacturing to healthcare to entertainment. Within AI...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Indianapolis, IN
Wiley
[2019]
|
Schlagworte: | |
Online-Zugang: | FCO01 FHA01 UBY01 Volltext Buchcover |
Zusammenfassung: | Build a Keras model to scale and deploy on a Kubernetes cluster. We have seen an exponential growth in the use of Artificial Intelligence (AI) over last few years. AI is becoming the new electricity and is touching every industry from retail to manufacturing to healthcare to entertainment. Within AI, we're seeing a particular growth in Machine Learning (ML) and Deep Learning (DL) applications. ML is all about learning relationships from labeled (Supervised) or unlabeled data (Unsupervised). DL has many layers of learning and can extract patterns from unstructured data like images, video, audio, etc. Keras to Kubernetes: The Journey of a Machine Learning Model to Production takes you through real-world examples of building DL models in Keras for recognizing product logos in images and extracting sentiment from text. You will then take that trained model and package it as a web application container before learning how to deploy this model at scale on a Kubernetes cluster. You will understand the different practical steps involved in real-world ML implementations which go beyond the algorithms |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (xviii, 302 Seiten) |
ISBN: | 9781119564874 1119564875 9781119564867 9781119564843 1119564840 |
DOI: | 10.1002/9781119564843 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV046430474 | ||
003 | DE-604 | ||
005 | 20230113 | ||
007 | cr|uuu---uuuuu | ||
008 | 200218s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781119564874 |9 978-1-119-56487-4 | ||
020 | |a 1119564875 |9 1-119-56487-5 | ||
020 | |a 9781119564867 |9 978-1-119-56486-7 | ||
020 | |a 9781119564843 |9 978-1-119-56484-3 | ||
020 | |a 1119564840 |9 1-119-56484-0 | ||
024 | 7 | |a 10.1002/9781119564843 |2 doi | |
035 | |a (OCoLC)1141125015 | ||
035 | |a (DE-599)HEB453837336 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-Aug4 |a DE-858 | ||
050 | 0 | |a Q325.5 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Rao, Dattaraj |e Verfasser |4 aut | |
245 | 1 | 0 | |a Keras to Kubernetes |b the journey of a machine learning model to production |c Dattaraj Jagdish Rao |
264 | 1 | |a Indianapolis, IN |b Wiley |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a 1 Online-Ressource (xviii, 302 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a Build a Keras model to scale and deploy on a Kubernetes cluster. We have seen an exponential growth in the use of Artificial Intelligence (AI) over last few years. AI is becoming the new electricity and is touching every industry from retail to manufacturing to healthcare to entertainment. Within AI, we're seeing a particular growth in Machine Learning (ML) and Deep Learning (DL) applications. ML is all about learning relationships from labeled (Supervised) or unlabeled data (Unsupervised). DL has many layers of learning and can extract patterns from unstructured data like images, video, audio, etc. Keras to Kubernetes: The Journey of a Machine Learning Model to Production takes you through real-world examples of building DL models in Keras for recognizing product logos in images and extracting sentiment from text. You will then take that trained model and package it as a web application container before learning how to deploy this model at scale on a Kubernetes cluster. You will understand the different practical steps involved in real-world ML implementations which go beyond the algorithms | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kubernetes |0 (DE-588)1153019000 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Innovationsmanagement |0 (DE-588)4161817-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unternehmen |0 (DE-588)4061963-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Produktplanung |0 (DE-588)4135135-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Unternehmen |0 (DE-588)4061963-1 |D s |
689 | 0 | 1 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 2 | |a Produktplanung |0 (DE-588)4135135-6 |D s |
689 | 0 | 3 | |a Innovationsmanagement |0 (DE-588)4161817-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 1 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | 2 | |a Kubernetes |0 (DE-588)1153019000 |D s |
689 | 1 | 3 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 2 | 1 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 2 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-119-56483-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1-119-56483-2 |
856 | 4 | 0 | |u https://doi.org/10.1002/9781119564843 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031842722&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Buchcover |
912 | |a ZDB-35-WIC | ||
940 | 1 | |q UBY_PDA_WIC_Kauf | |
999 | |a oai:aleph.bib-bvb.de:BVB01-031842722 | ||
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119564843 |l FCO01 |p ZDB-35-WIC |q FCO_PDA_WIC_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1002/9781119564843 |l FHA01 |p ZDB-35-WIC |q FHA_PDA_WIC_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1002/9781119564843 |l UBY01 |p ZDB-35-WIC |q UBY_PDA_WIC_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180981713731584 |
---|---|
any_adam_object | 1 |
author | Rao, Dattaraj |
author_facet | Rao, Dattaraj |
author_role | aut |
author_sort | Rao, Dattaraj |
author_variant | d r dr |
building | Verbundindex |
bvnumber | BV046430474 |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 |
callnumber-search | Q325.5 |
callnumber-sort | Q 3325.5 |
callnumber-subject | Q - General Science |
classification_rvk | ST 300 |
collection | ZDB-35-WIC |
ctrlnum | (OCoLC)1141125015 (DE-599)HEB453837336 |
discipline | Informatik |
doi_str_mv | 10.1002/9781119564843 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04379nmm a2200733 c 4500</leader><controlfield tag="001">BV046430474</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230113 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200218s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119564874</subfield><subfield code="9">978-1-119-56487-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119564875</subfield><subfield code="9">1-119-56487-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119564867</subfield><subfield code="9">978-1-119-56486-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119564843</subfield><subfield code="9">978-1-119-56484-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119564840</subfield><subfield code="9">1-119-56484-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9781119564843</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1141125015</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HEB453837336</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q325.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rao, Dattaraj</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Keras to Kubernetes</subfield><subfield code="b">the journey of a machine learning model to production</subfield><subfield code="c">Dattaraj Jagdish Rao</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Indianapolis, IN</subfield><subfield code="b">Wiley</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 302 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Build a Keras model to scale and deploy on a Kubernetes cluster. We have seen an exponential growth in the use of Artificial Intelligence (AI) over last few years. AI is becoming the new electricity and is touching every industry from retail to manufacturing to healthcare to entertainment. Within AI, we're seeing a particular growth in Machine Learning (ML) and Deep Learning (DL) applications. ML is all about learning relationships from labeled (Supervised) or unlabeled data (Unsupervised). DL has many layers of learning and can extract patterns from unstructured data like images, video, audio, etc. Keras to Kubernetes: The Journey of a Machine Learning Model to Production takes you through real-world examples of building DL models in Keras for recognizing product logos in images and extracting sentiment from text. You will then take that trained model and package it as a web application container before learning how to deploy this model at scale on a Kubernetes cluster. You will understand the different practical steps involved in real-world ML implementations which go beyond the algorithms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kubernetes</subfield><subfield code="0">(DE-588)1153019000</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Innovationsmanagement</subfield><subfield code="0">(DE-588)4161817-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unternehmen</subfield><subfield code="0">(DE-588)4061963-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Produktplanung</subfield><subfield code="0">(DE-588)4135135-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unternehmen</subfield><subfield code="0">(DE-588)4061963-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Produktplanung</subfield><subfield code="0">(DE-588)4135135-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Innovationsmanagement</subfield><subfield code="0">(DE-588)4161817-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Kubernetes</subfield><subfield code="0">(DE-588)1153019000</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-119-56483-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1-119-56483-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/9781119564843</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031842722&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Buchcover</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_WIC_Kauf</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031842722</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119564843</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FCO_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1002/9781119564843</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FHA_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1002/9781119564843</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBY_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046430474 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:44:24Z |
institution | BVB |
isbn | 9781119564874 1119564875 9781119564867 9781119564843 1119564840 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031842722 |
oclc_num | 1141125015 |
open_access_boolean | |
owner | DE-706 DE-Aug4 DE-858 |
owner_facet | DE-706 DE-Aug4 DE-858 |
physical | 1 Online-Ressource (xviii, 302 Seiten) |
psigel | ZDB-35-WIC UBY_PDA_WIC_Kauf ZDB-35-WIC FCO_PDA_WIC_Kauf ZDB-35-WIC FHA_PDA_WIC_Kauf ZDB-35-WIC UBY_PDA_WIC_Kauf |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Wiley |
record_format | marc |
spelling | Rao, Dattaraj Verfasser aut Keras to Kubernetes the journey of a machine learning model to production Dattaraj Jagdish Rao Indianapolis, IN Wiley [2019] © 2019 1 Online-Ressource (xviii, 302 Seiten) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index Build a Keras model to scale and deploy on a Kubernetes cluster. We have seen an exponential growth in the use of Artificial Intelligence (AI) over last few years. AI is becoming the new electricity and is touching every industry from retail to manufacturing to healthcare to entertainment. Within AI, we're seeing a particular growth in Machine Learning (ML) and Deep Learning (DL) applications. ML is all about learning relationships from labeled (Supervised) or unlabeled data (Unsupervised). DL has many layers of learning and can extract patterns from unstructured data like images, video, audio, etc. Keras to Kubernetes: The Journey of a Machine Learning Model to Production takes you through real-world examples of building DL models in Keras for recognizing product logos in images and extracting sentiment from text. You will then take that trained model and package it as a web application container before learning how to deploy this model at scale on a Kubernetes cluster. You will understand the different practical steps involved in real-world ML implementations which go beyond the algorithms Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Kubernetes (DE-588)1153019000 gnd rswk-swf Innovationsmanagement (DE-588)4161817-8 gnd rswk-swf Keras Framework, Informatik (DE-588)1160521077 gnd rswk-swf Unternehmen (DE-588)4061963-1 gnd rswk-swf Produktplanung (DE-588)4135135-6 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Deep learning (DE-588)1135597375 gnd rswk-swf Unternehmen (DE-588)4061963-1 s Künstliche Intelligenz (DE-588)4033447-8 s Produktplanung (DE-588)4135135-6 s Innovationsmanagement (DE-588)4161817-8 s DE-604 Maschinelles Lernen (DE-588)4193754-5 s Kubernetes (DE-588)1153019000 s Keras Framework, Informatik (DE-588)1160521077 s Deep learning (DE-588)1135597375 s Erscheint auch als Druck-Ausgabe 978-1-119-56483-6 Erscheint auch als Druck-Ausgabe 1-119-56483-2 https://doi.org/10.1002/9781119564843 Verlag URL des Erstveröffentlichers Volltext SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031842722&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Buchcover |
spellingShingle | Rao, Dattaraj Keras to Kubernetes the journey of a machine learning model to production Maschinelles Lernen (DE-588)4193754-5 gnd Kubernetes (DE-588)1153019000 gnd Innovationsmanagement (DE-588)4161817-8 gnd Keras Framework, Informatik (DE-588)1160521077 gnd Unternehmen (DE-588)4061963-1 gnd Produktplanung (DE-588)4135135-6 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Deep learning (DE-588)1135597375 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)1153019000 (DE-588)4161817-8 (DE-588)1160521077 (DE-588)4061963-1 (DE-588)4135135-6 (DE-588)4033447-8 (DE-588)1135597375 |
title | Keras to Kubernetes the journey of a machine learning model to production |
title_auth | Keras to Kubernetes the journey of a machine learning model to production |
title_exact_search | Keras to Kubernetes the journey of a machine learning model to production |
title_full | Keras to Kubernetes the journey of a machine learning model to production Dattaraj Jagdish Rao |
title_fullStr | Keras to Kubernetes the journey of a machine learning model to production Dattaraj Jagdish Rao |
title_full_unstemmed | Keras to Kubernetes the journey of a machine learning model to production Dattaraj Jagdish Rao |
title_short | Keras to Kubernetes |
title_sort | keras to kubernetes the journey of a machine learning model to production |
title_sub | the journey of a machine learning model to production |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd Kubernetes (DE-588)1153019000 gnd Innovationsmanagement (DE-588)4161817-8 gnd Keras Framework, Informatik (DE-588)1160521077 gnd Unternehmen (DE-588)4061963-1 gnd Produktplanung (DE-588)4135135-6 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Deep learning (DE-588)1135597375 gnd |
topic_facet | Maschinelles Lernen Kubernetes Innovationsmanagement Keras Framework, Informatik Unternehmen Produktplanung Künstliche Intelligenz Deep learning |
url | https://doi.org/10.1002/9781119564843 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031842722&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT raodattaraj kerastokubernetesthejourneyofamachinelearningmodeltoproduction |