Data exploration using example-based methods:
Data usually comes in a plethora of formats and dimensions, rendering the exploration and information extraction processes challenging. Thus, being able to perform exploratory analyses in the data with the intent of having an immediate glimpse on some of the data properties is becoming crucial. Expl...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[San Rafael, California]
Morgan & Claypool
[2019]
|
Schriftenreihe: | Synthesis lectures on data management
#53 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Data usually comes in a plethora of formats and dimensions, rendering the exploration and information extraction processes challenging. Thus, being able to perform exploratory analyses in the data with the intent of having an immediate glimpse on some of the data properties is becoming crucial. Exploratory analyses should be simple enough to avoid complicate declarative languages (such as SQL) and mechanisms, and at the same time retain the flexibility and expressiveness of such languages. Recently, we have witnessed a rediscovery of the so-called example-based methods, in which the user, or the analyst, circumvents query languages by using examples as input. An example is a representative of the intended results, or in other words, an item from the result set. Example-based methods exploit inherent characteristics of the data to infer the results that the user has in mind, but may not able to (easily) express. They can be useful in cases where a user is looking for information in an unfamiliar dataset, when the task is particularly challenging like finding duplicate items, or simply when they are exploring the data. In this book, we present an excursus over the main methods for exploratory analysis, with a particular focus on example-based methods. We show how that different data types require different techniques, and present algorithms that are specifically designed for relational, textual, and graph data. The book presents also the challenges and the new frontiers of machine learning in online settings which recently attracted the attention of the database community. The lecture concludes with a vision for further research and applications in this area |
Beschreibung: | Part of: Synthesis digital library of engineering and computer science Title from PDF title page (viewed on November 28, 2018) |
Beschreibung: | 1 Online-Resource (xvii, 146 Seiten) Illustrationen |
ISBN: | 9781681734569 |
DOI: | 10.2200/S00881ED1V01Y201810DTM053 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046427636 | ||
003 | DE-604 | ||
005 | 20211124 | ||
007 | cr|uuu---uuuuu | ||
008 | 200217s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781681734569 |c ebook |9 978-1-68173-456-9 | ||
024 | 7 | |a 10.2200/S00881ED1V01Y201810DTM053 |2 doi | |
035 | |a (ZDB-105-MCS)8552738 | ||
035 | |a (OCoLC)1079395189 | ||
035 | |a (DE-599)BVBBV046427636 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 005.7565 |2 23 | |
100 | 1 | |a Lissandrini, Matteo |e Verfasser |0 (DE-588)1186639741 |4 aut | |
245 | 1 | 0 | |a Data exploration using example-based methods |c Matteo Lissandrini, Davide Mottin, Themis Palpanas, Yannis Velegrakis |
264 | 1 | |a [San Rafael, California] |b Morgan & Claypool |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a 1 Online-Resource (xvii, 146 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Synthesis lectures on data management |v #53 | |
500 | |a Part of: Synthesis digital library of engineering and computer science | ||
500 | |a Title from PDF title page (viewed on November 28, 2018) | ||
520 | |a Data usually comes in a plethora of formats and dimensions, rendering the exploration and information extraction processes challenging. Thus, being able to perform exploratory analyses in the data with the intent of having an immediate glimpse on some of the data properties is becoming crucial. Exploratory analyses should be simple enough to avoid complicate declarative languages (such as SQL) and mechanisms, and at the same time retain the flexibility and expressiveness of such languages. Recently, we have witnessed a rediscovery of the so-called example-based methods, in which the user, or the analyst, circumvents query languages by using examples as input. An example is a representative of the intended results, or in other words, an item from the result set. Example-based methods exploit inherent characteristics of the data to infer the results that the user has in mind, but may not able to (easily) express. They can be useful in cases where a user is looking for information in an unfamiliar dataset, when the task is particularly challenging like finding duplicate items, or simply when they are exploring the data. In this book, we present an excursus over the main methods for exploratory analysis, with a particular focus on example-based methods. We show how that different data types require different techniques, and present algorithms that are specifically designed for relational, textual, and graph data. The book presents also the challenges and the new frontiers of machine learning in online settings which recently attracted the attention of the database community. The lecture concludes with a vision for further research and applications in this area | ||
650 | 4 | |a Database searching | |
650 | 4 | |a Database management | |
650 | 4 | |a Programming by example (Computer science) | |
650 | 0 | 7 | |a Explorative Datenanalyse |0 (DE-588)4128896-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Explorative Datenanalyse |0 (DE-588)4128896-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Mottin, Davide |e Verfasser |0 (DE-588)1186639709 |4 aut | |
700 | 1 | |a Palpanas, Themis |e Verfasser |0 (DE-588)1207415944 |4 aut | |
700 | 1 | |a Velegrakis, Yannis |e Verfasser |0 (DE-588)1207416169 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, paperback |z 978-1-68173-455-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, hardcover |z 978-1-6817-3457-6 |
830 | 0 | |a Synthesis lectures on data management |v #53 |w (DE-604)BV036731811 |9 53 | |
856 | 4 | 0 | |u https://doi.org/10.2200/S00881ED1V01Y201810DTM053 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-105-MCS |a ZDB-105-MCDM | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031839939 |
Datensatz im Suchindex
_version_ | 1804180976794861568 |
---|---|
any_adam_object | |
author | Lissandrini, Matteo Mottin, Davide Palpanas, Themis Velegrakis, Yannis |
author_GND | (DE-588)1186639741 (DE-588)1186639709 (DE-588)1207415944 (DE-588)1207416169 |
author_facet | Lissandrini, Matteo Mottin, Davide Palpanas, Themis Velegrakis, Yannis |
author_role | aut aut aut aut |
author_sort | Lissandrini, Matteo |
author_variant | m l ml d m dm t p tp y v yv |
building | Verbundindex |
bvnumber | BV046427636 |
collection | ZDB-105-MCS ZDB-105-MCDM |
ctrlnum | (ZDB-105-MCS)8552738 (OCoLC)1079395189 (DE-599)BVBBV046427636 |
dewey-full | 005.7565 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.7565 |
dewey-search | 005.7565 |
dewey-sort | 15.7565 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.2200/S00881ED1V01Y201810DTM053 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03829nmm a2200517zcb4500</leader><controlfield tag="001">BV046427636</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211124 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200217s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781681734569</subfield><subfield code="c">ebook</subfield><subfield code="9">978-1-68173-456-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2200/S00881ED1V01Y201810DTM053</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-105-MCS)8552738</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1079395189</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046427636</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.7565</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lissandrini, Matteo</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1186639741</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data exploration using example-based methods</subfield><subfield code="c">Matteo Lissandrini, Davide Mottin, Themis Palpanas, Yannis Velegrakis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[San Rafael, California]</subfield><subfield code="b">Morgan & Claypool</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Resource (xvii, 146 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Synthesis lectures on data management</subfield><subfield code="v">#53</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Part of: Synthesis digital library of engineering and computer science</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed on November 28, 2018)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Data usually comes in a plethora of formats and dimensions, rendering the exploration and information extraction processes challenging. Thus, being able to perform exploratory analyses in the data with the intent of having an immediate glimpse on some of the data properties is becoming crucial. Exploratory analyses should be simple enough to avoid complicate declarative languages (such as SQL) and mechanisms, and at the same time retain the flexibility and expressiveness of such languages. Recently, we have witnessed a rediscovery of the so-called example-based methods, in which the user, or the analyst, circumvents query languages by using examples as input. An example is a representative of the intended results, or in other words, an item from the result set. Example-based methods exploit inherent characteristics of the data to infer the results that the user has in mind, but may not able to (easily) express. They can be useful in cases where a user is looking for information in an unfamiliar dataset, when the task is particularly challenging like finding duplicate items, or simply when they are exploring the data. In this book, we present an excursus over the main methods for exploratory analysis, with a particular focus on example-based methods. We show how that different data types require different techniques, and present algorithms that are specifically designed for relational, textual, and graph data. The book presents also the challenges and the new frontiers of machine learning in online settings which recently attracted the attention of the database community. The lecture concludes with a vision for further research and applications in this area</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Database searching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Database management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programming by example (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Explorative Datenanalyse</subfield><subfield code="0">(DE-588)4128896-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Explorative Datenanalyse</subfield><subfield code="0">(DE-588)4128896-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mottin, Davide</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1186639709</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palpanas, Themis</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1207415944</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Velegrakis, Yannis</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1207416169</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, paperback</subfield><subfield code="z">978-1-68173-455-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, hardcover</subfield><subfield code="z">978-1-6817-3457-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Synthesis lectures on data management</subfield><subfield code="v">#53</subfield><subfield code="w">(DE-604)BV036731811</subfield><subfield code="9">53</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2200/S00881ED1V01Y201810DTM053</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-105-MCS</subfield><subfield code="a">ZDB-105-MCDM</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031839939</subfield></datafield></record></collection> |
id | DE-604.BV046427636 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:44:19Z |
institution | BVB |
isbn | 9781681734569 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031839939 |
oclc_num | 1079395189 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Resource (xvii, 146 Seiten) Illustrationen |
psigel | ZDB-105-MCS ZDB-105-MCDM |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Morgan & Claypool |
record_format | marc |
series | Synthesis lectures on data management |
series2 | Synthesis lectures on data management |
spelling | Lissandrini, Matteo Verfasser (DE-588)1186639741 aut Data exploration using example-based methods Matteo Lissandrini, Davide Mottin, Themis Palpanas, Yannis Velegrakis [San Rafael, California] Morgan & Claypool [2019] © 2019 1 Online-Resource (xvii, 146 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Synthesis lectures on data management #53 Part of: Synthesis digital library of engineering and computer science Title from PDF title page (viewed on November 28, 2018) Data usually comes in a plethora of formats and dimensions, rendering the exploration and information extraction processes challenging. Thus, being able to perform exploratory analyses in the data with the intent of having an immediate glimpse on some of the data properties is becoming crucial. Exploratory analyses should be simple enough to avoid complicate declarative languages (such as SQL) and mechanisms, and at the same time retain the flexibility and expressiveness of such languages. Recently, we have witnessed a rediscovery of the so-called example-based methods, in which the user, or the analyst, circumvents query languages by using examples as input. An example is a representative of the intended results, or in other words, an item from the result set. Example-based methods exploit inherent characteristics of the data to infer the results that the user has in mind, but may not able to (easily) express. They can be useful in cases where a user is looking for information in an unfamiliar dataset, when the task is particularly challenging like finding duplicate items, or simply when they are exploring the data. In this book, we present an excursus over the main methods for exploratory analysis, with a particular focus on example-based methods. We show how that different data types require different techniques, and present algorithms that are specifically designed for relational, textual, and graph data. The book presents also the challenges and the new frontiers of machine learning in online settings which recently attracted the attention of the database community. The lecture concludes with a vision for further research and applications in this area Database searching Database management Programming by example (Computer science) Explorative Datenanalyse (DE-588)4128896-8 gnd rswk-swf Explorative Datenanalyse (DE-588)4128896-8 s DE-604 Mottin, Davide Verfasser (DE-588)1186639709 aut Palpanas, Themis Verfasser (DE-588)1207415944 aut Velegrakis, Yannis Verfasser (DE-588)1207416169 aut Erscheint auch als Druck-Ausgabe, paperback 978-1-68173-455-2 Erscheint auch als Druck-Ausgabe, hardcover 978-1-6817-3457-6 Synthesis lectures on data management #53 (DE-604)BV036731811 53 https://doi.org/10.2200/S00881ED1V01Y201810DTM053 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Lissandrini, Matteo Mottin, Davide Palpanas, Themis Velegrakis, Yannis Data exploration using example-based methods Synthesis lectures on data management Database searching Database management Programming by example (Computer science) Explorative Datenanalyse (DE-588)4128896-8 gnd |
subject_GND | (DE-588)4128896-8 |
title | Data exploration using example-based methods |
title_auth | Data exploration using example-based methods |
title_exact_search | Data exploration using example-based methods |
title_full | Data exploration using example-based methods Matteo Lissandrini, Davide Mottin, Themis Palpanas, Yannis Velegrakis |
title_fullStr | Data exploration using example-based methods Matteo Lissandrini, Davide Mottin, Themis Palpanas, Yannis Velegrakis |
title_full_unstemmed | Data exploration using example-based methods Matteo Lissandrini, Davide Mottin, Themis Palpanas, Yannis Velegrakis |
title_short | Data exploration using example-based methods |
title_sort | data exploration using example based methods |
topic | Database searching Database management Programming by example (Computer science) Explorative Datenanalyse (DE-588)4128896-8 gnd |
topic_facet | Database searching Database management Programming by example (Computer science) Explorative Datenanalyse |
url | https://doi.org/10.2200/S00881ED1V01Y201810DTM053 |
volume_link | (DE-604)BV036731811 |
work_keys_str_mv | AT lissandrinimatteo dataexplorationusingexamplebasedmethods AT mottindavide dataexplorationusingexamplebasedmethods AT palpanasthemis dataexplorationusingexamplebasedmethods AT velegrakisyannis dataexplorationusingexamplebasedmethods |