Singularities of mappings: the local behaviour of smooth and complex analytic mappings
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2020]
|
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften
357 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xv, 567 Seiten Illustrationen |
ISBN: | 3030344398 9783030344399 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV046422008 | ||
003 | DE-604 | ||
005 | 20210625 | ||
007 | t | ||
008 | 200213s2020 a||| |||| 00||| eng d | ||
020 | |a 3030344398 |9 3-030-34439-8 | ||
020 | |a 9783030344399 |c Festeinband |9 978-3-030-34439-9 | ||
035 | |a (OCoLC)1141140594 | ||
035 | |a (DE-599)KXP1689555432 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-83 |a DE-11 |a DE-19 | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a 58K25 |2 msc | ||
084 | |a 14B05 |2 msc | ||
084 | |a 58K15 |2 msc | ||
084 | |a 32S25 |2 msc | ||
100 | 1 | |a Mond, David |d 1950- |e Verfasser |0 (DE-588)1024678164 |4 aut | |
245 | 1 | 0 | |a Singularities of mappings |b the local behaviour of smooth and complex analytic mappings |c David Mond, Juan J. Nuño-Ballesteros |
264 | 1 | |a Cham, Switzerland |b Springer |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a xv, 567 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Grundlehren der mathematischen Wissenschaften |v 357 | |
650 | 0 | 7 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abbildung |g Mathematik |0 (DE-588)4000044-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |D s |
689 | 0 | 1 | |a Abbildung |g Mathematik |0 (DE-588)4000044-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Nuño-Ballesteros, Juan J. |e Verfasser |0 (DE-588)1204380287 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-34440-5 |
830 | 0 | |a Grundlehren der mathematischen Wissenschaften |v 357 |w (DE-604)BV000000395 |9 357 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031834423&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-031834423 |
Datensatz im Suchindex
_version_ | 1804180968013037568 |
---|---|
adam_text | David Mond • Juan J Nuno-Ballesteros
Singularities of Mappings
The Local Behaviour of Smooth and Complex
Analytic Mappings
Springer
Contents
1 Introduction 1
1 1 Real or Complex? 2
1 2 Structure of the Book 3
1 3 The Nearby Stable Object 6
1 4 Exercises and Open Questions 10
1 5 Notation 10
Part I Thom-Mather Theory: Right-Left Equivalence, Stability,
Versal Unfoldings, Finite Determinacy
2 Manifolds and Smooth Mappings 13
2 1 Germs 13
2 2 Manifolds and Their Tangent Spaces 15
2 3 Inverse Mapping Theorem and Consequences 24
2 4 Submanifolds 29
2 5 Vector Fields and Flows 32
2 6 Transversality 40
2 7 Local Conical Structure 44
3 Left-Right Equivalence and Stability 45
3 1 Classification of Functions by Right Equivalence 46
3 2 Left-Right Equivalence and Stability 58
321 Right Equivalence and Left Equivalence 71
3 3 First Calculations 74
3 4 Multi-Germs 81
341 Notation 81
3 5 Infinitesimal Stability Implies Stability 88
3 6 Stability of Multi-Germs 92
4 Contact Equivalence 97
4 1 The Contact Tangent Space 97
4 2 Using TJ amp;ef to Calculate Tsrfef 102
xi
Contents
xii
4 3 Construction of Stable Germs as Unfoldings 105
4 4 Contact Equivalence 108
4 5 Geometric Criterion for Finite rt^-Codimension
451 Sheafificalion U?
4 6 Transversality 122
4 7 Thom-Boardman Singularities 128
5 Versal Unfoldings 141
5 1 Versality 142
5 2 Global Stability of C00 Mappings 156
521 Stable Maps Are Not Always Dense 158
522 Mather’s Nice Dimensions 16®
5 3 Topological Stability 162
5 4 Bifurcation Sets 163
5 5 The Notion of Stable Perturbation of a Map-Germ 126
6 Finite Determinacy 181
6 1 Proof of the Finite Determinacy Theorem 184
6 2 Estimates for the Determinacy Degree 191
6 3 Determinacy and Unipotency 200
631 Unipotent Affine Algebraic Groups 204
632 Unipotent Groups of Jfc-Jets of Diffeomorphisms 206
633 When Is a Closed Affine Space of Germs
Contained in a S^-Orbit? 209
634 Complexification and Determinacy Degrees 209
635 Notes 209
6 4 Complete Transversals 210
6 5 Notes and Further Developments 215
7 Classification of Stable Germs by Their Local Algebras 217
7 1 Stable Germs Are Classified by Their Local Algebras 217
7 2 Construction of Stable Germs as Unfoldings 223
7 3 The Isosingular Locus 227
731 Weighted Homogeneity and Local Quasihomogeneity 231
7 4 Quasihomogeneity and the Nice Dimensions 232
741 Multi-Germs 235
742 The Case n p 236
743 The Case n p 238
Part II Images and Discriminants: The Topology of Stable
Perturbations
8 Stable Images and Discriminants 253
8 1 Introduction 253
811 Complex Not Real 258
8 2 Review of the Milnor Fibre 25
Contents
xiii
8 3 The Homotopy Type of the Discriminant of a Stable
Perturbation: Discriminant and Image Milnor Numbers 261
8 4 Finding T^f in the Geometry of /: Maps from n-Space
to n+ 1-Space 269
841 The Conductor Ideal 275
8 5 Finding f in the Geometry of /: Sections of Stable
Discriminants and Images 279
851 Critical Space and Discriminant 283
8 6 Bifurcation Sets 289
8 7 Calculating the Discriminant Milnor Number 292
8 8 Image Milnor Number and -Codimension 298
8 9 Further Developments 299
891 Almost Free Divisors 299
892 Thom Polynomial Techniques 300
893 Does Constant Imply Topological Triviality? 300
894 The Milnor-Tjurina Relation 300
895 Augmentation and Concatenation: New Germs
from Old 301
9 Multiple Points 303
9 1 Introduction 303
9 2 Choosing the Right Definition 304
921 Semi-Simplicial Spaces 311
922 When Is (/) Reduced? 312
923 Irritating Notation, Occasionally Necessary 312
924 Equations or Procedures? 315
9 3 Expected Dimension 315
9 4 Equations for D2(f) 320
9 5 Equations for Dk(f) When / Is a Corank 1 Germ 327
951 Generalities on Functions of One Variable 327
952 Application to Multiple Points 333
9 6 Bifurcation Sets for Germs of Corank 1 341
9 7 Disentangling a Singularity: The Geometry of a Stable
Perturbation 345
9 8 Blowing-Up Multiple Points 351
981 Construction of an Ambient Space for Kk 352
982 Construction of Kkif) as Subspace of Bk{X) 355
9 9 What Remains To Be Done 366
10 Calculating the Homology of the Image 369
10 1 The Alternating Chain Complex 370
10 1 1 Motivation 373
10 2 The Image Computing Spectral Sequence 380
10 2 1 Towards the ICSS 384
10 2 2 The Filtrations 385
XIV
Contents
10 2 3 The Spectral Sequence of a Filtered Complex 385
10 2 4 The Spectral Sequences Arising from the Two
Filtrations on the Total Complex of the Double
Complex 386
10 3 Finite Simplicial Maps 389
10 3 1 Triangulating Dk{f) 391
10 3 2 (C„A11(D*(/)),e;) Is a Resolution of C„(T) 394
10 4 Finite Complex Maps Are Triangulable 398
10 5 Other Proofs 399
10 6 Cohomology 399
10 7 Examples and Applications of the ICSS 402
10 7 1 The Reidemeisler Moves 403
10 7 2 Reidemeisler I 403
10 7 3 Reidemeister II 404
10 7 4 Reidemeister III 405
10 7 5 Map-Germs of Multiplicity 2 406
10 7 6 Codimension 1 Corank 1 Germs 409
10 7 7 Generalised Mayer-Vietoris 410
10 7 8 Relation Between AHt and H, 411
10 7 9 Exercises for Sect 10 7 411
10 8 Open Questions 412
II Multiple Points in the Target: The Case of Parameterised
Hypersurfaces 413
11 1 Finding a Presentation 414
11 1 1 Using Macaulay2 to Find a Presentation 418
11 2 Fitting Ideals and Multiple Points in the Target 421
11 2 1 Are the Fitting Ideal Spaces Mk(f)
Cohen-Macaulay? 428
11 3 Dou ble Points in the Target 431
11 4 c/f-Codimension and Image Milnor Number
of Map-Germs(C S) - (C+1,0) 436
11 5 The Rank Condition 442
11 6 Corank 1 Mappings: Cyclic Extensions 447
11 7 Duality and Symmetric Presentations 451
11 7 1 Gorenstein Rings and Symmetric Presentations 455
11 7 2 Geometrical Interpretation of the Trace
Homomorphism 458
11 8 Triple Points in the Target 462
A Jet Spaces and Jet Bundles 46
B Stratifications 47
B l Stratification of Sets 47
B 2 Stratification of Mappings 48
B 3 Semialgebraic Sets 48
Contents xv
C Background in Commutative Algebra 489
C l Spaces and Functions on Spaces 489
C 2 Associated Primes 493
C 3 Dimension, Depth and Cohen-Macaulay Modules 495
C31 Krull Dimension 495
C32 Slicing Dimension 496
C33 Hilbert-Samuel Dimension 498
C34 Weierstrass Dimension 498
C35 The Hauptidealsatz 498
C36 Depth and Cohen-Macaulay Modules 500
C 4 Free Resolutions 503
C41 Cohen-Macaulay Modules and Freeness 504
C42 Examples of Cohen-Macaulay Spaces 505
C 5 Pulling Back Algebraic Structures 508
C 6 Samuel Multiplicity 513
D Local Analytic Geometry 517
D l The Preparation Theorem 517
D 2 Local Properties of Analytic Sets and Finite Mappings 521
D 3 Degree and Multiplicity 525
D 4 Normalisation of Analytic Set-Germs 528
D41 Extension Theorems 531
D42 Normalisation 532
E Sheaves 537
E 1 Presheaves and Sheaves 537
E 2 Coherence 541
E 3 Conservation of Multiplicity 545
E31 Representatives 545
E 4 Conservation of Multiplicity II 549
References 553
|
any_adam_object | 1 |
author | Mond, David 1950- Nuño-Ballesteros, Juan J. |
author_GND | (DE-588)1024678164 (DE-588)1204380287 |
author_facet | Mond, David 1950- Nuño-Ballesteros, Juan J. |
author_role | aut aut |
author_sort | Mond, David 1950- |
author_variant | d m dm j j n b jjn jjnb |
building | Verbundindex |
bvnumber | BV046422008 |
classification_rvk | SK 350 SK 240 |
ctrlnum | (OCoLC)1141140594 (DE-599)KXP1689555432 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01966nam a2200469 cb4500</leader><controlfield tag="001">BV046422008</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210625 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200213s2020 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3030344398</subfield><subfield code="9">3-030-34439-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030344399</subfield><subfield code="c">Festeinband</subfield><subfield code="9">978-3-030-34439-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1141140594</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1689555432</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58K25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14B05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58K15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">32S25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mond, David</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1024678164</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Singularities of mappings</subfield><subfield code="b">the local behaviour of smooth and complex analytic mappings</subfield><subfield code="c">David Mond, Juan J. Nuño-Ballesteros</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 567 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">357</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abbildung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4000044-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Abbildung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4000044-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nuño-Ballesteros, Juan J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1204380287</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-34440-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">357</subfield><subfield code="w">(DE-604)BV000000395</subfield><subfield code="9">357</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031834423&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031834423</subfield></datafield></record></collection> |
id | DE-604.BV046422008 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:44:11Z |
institution | BVB |
isbn | 3030344398 9783030344399 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031834423 |
oclc_num | 1141140594 |
open_access_boolean | |
owner | DE-20 DE-83 DE-11 DE-19 DE-BY-UBM |
owner_facet | DE-20 DE-83 DE-11 DE-19 DE-BY-UBM |
physical | xv, 567 Seiten Illustrationen |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer |
record_format | marc |
series | Grundlehren der mathematischen Wissenschaften |
series2 | Grundlehren der mathematischen Wissenschaften |
spelling | Mond, David 1950- Verfasser (DE-588)1024678164 aut Singularities of mappings the local behaviour of smooth and complex analytic mappings David Mond, Juan J. Nuño-Ballesteros Cham, Switzerland Springer [2020] © 2020 xv, 567 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Grundlehren der mathematischen Wissenschaften 357 Singularität Mathematik (DE-588)4077459-4 gnd rswk-swf Abbildung Mathematik (DE-588)4000044-8 gnd rswk-swf Singularität Mathematik (DE-588)4077459-4 s Abbildung Mathematik (DE-588)4000044-8 s DE-604 Nuño-Ballesteros, Juan J. Verfasser (DE-588)1204380287 aut Erscheint auch als Online-Ausgabe 978-3-030-34440-5 Grundlehren der mathematischen Wissenschaften 357 (DE-604)BV000000395 357 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031834423&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Mond, David 1950- Nuño-Ballesteros, Juan J. Singularities of mappings the local behaviour of smooth and complex analytic mappings Grundlehren der mathematischen Wissenschaften Singularität Mathematik (DE-588)4077459-4 gnd Abbildung Mathematik (DE-588)4000044-8 gnd |
subject_GND | (DE-588)4077459-4 (DE-588)4000044-8 |
title | Singularities of mappings the local behaviour of smooth and complex analytic mappings |
title_auth | Singularities of mappings the local behaviour of smooth and complex analytic mappings |
title_exact_search | Singularities of mappings the local behaviour of smooth and complex analytic mappings |
title_full | Singularities of mappings the local behaviour of smooth and complex analytic mappings David Mond, Juan J. Nuño-Ballesteros |
title_fullStr | Singularities of mappings the local behaviour of smooth and complex analytic mappings David Mond, Juan J. Nuño-Ballesteros |
title_full_unstemmed | Singularities of mappings the local behaviour of smooth and complex analytic mappings David Mond, Juan J. Nuño-Ballesteros |
title_short | Singularities of mappings |
title_sort | singularities of mappings the local behaviour of smooth and complex analytic mappings |
title_sub | the local behaviour of smooth and complex analytic mappings |
topic | Singularität Mathematik (DE-588)4077459-4 gnd Abbildung Mathematik (DE-588)4000044-8 gnd |
topic_facet | Singularität Mathematik Abbildung Mathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031834423&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000395 |
work_keys_str_mv | AT monddavid singularitiesofmappingsthelocalbehaviourofsmoothandcomplexanalyticmappings AT nunoballesterosjuanj singularitiesofmappingsthelocalbehaviourofsmoothandcomplexanalyticmappings |