Wigner-type theorems for Hilbert Grassmannians:
"Wigner's theorem (67) provides a geometric characterization of unitary and anti-unitary operators as transformations of the set of rays of a complex Hilbert space, or equivalently, rank one projections. This statement plays an important role in mathematical foundations of quantum mechanic...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York, NY ; Port Melbourne ; New Delhi ; Singapore
Cambridge University Press
2020
|
Schriftenreihe: | London Mathematical Society lecture note series
460 |
Schlagworte: | |
Zusammenfassung: | "Wigner's theorem (67) provides a geometric characterization of unitary and anti-unitary operators as transformations of the set of rays of a complex Hilbert space, or equivalently, rank one projections. This statement plays an important role in mathematical foundations of quantum mechanics (11; 50; 63), since rays (rank one projections) can be identified with pure states of quantum mechanical systems. We present various types of extensions of Wigner's theorem onto Hilbert Grassmannians and their applications. Most of these results were obtained after 2000, but to completeness of the exposition we include some classical theorems closely connected to the main topic (for example, Kakutani-Mackey's result on the lattice of closed subspaces of a complex Banach space (31), Kadison's theorem on transformations preserving the convex structure of the set of states of quantum mechanical systems (30)). We use geometric methods related to the Fundamental Theorem of Projective Geometry and results in spirit of Chow's theorem (13)"-- |
Beschreibung: | 2002 |
Beschreibung: | vii, 145 Seiten |
ISBN: | 9781108790918 1108790917 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV046420126 | ||
003 | DE-604 | ||
005 | 20200901 | ||
007 | t | ||
008 | 200212s2020 |||| 00||| eng d | ||
020 | |a 9781108790918 |9 978-1-108-79091-8 | ||
020 | |a 1108790917 |9 1108790917 | ||
035 | |a (OCoLC)1141159630 | ||
035 | |a (DE-599)BVBBV046420126 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Pankov, Mark |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1033189499 |4 aut | |
245 | 1 | 0 | |a Wigner-type theorems for Hilbert Grassmannians |c Mark Pankov, University of Warmia and Mazury in Olsztyn, Poland |
264 | 1 | |a Cambridge ; New York, NY ; Port Melbourne ; New Delhi ; Singapore |b Cambridge University Press |c 2020 | |
300 | |a vii, 145 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series |v 460 | |
500 | |a 2002 | ||
505 | 8 | |a Two lattices -- Geometric transformations of Grassmannians -- Lattices of closed subspaces -- Wigner's theorem and its generalizations -- Compatibility relation -- Applications | |
520 | 3 | |a "Wigner's theorem (67) provides a geometric characterization of unitary and anti-unitary operators as transformations of the set of rays of a complex Hilbert space, or equivalently, rank one projections. This statement plays an important role in mathematical foundations of quantum mechanics (11; 50; 63), since rays (rank one projections) can be identified with pure states of quantum mechanical systems. We present various types of extensions of Wigner's theorem onto Hilbert Grassmannians and their applications. Most of these results were obtained after 2000, but to completeness of the exposition we include some classical theorems closely connected to the main topic (for example, Kakutani-Mackey's result on the lattice of closed subspaces of a complex Banach space (31), Kadison's theorem on transformations preserving the convex structure of the set of states of quantum mechanical systems (30)). We use geometric methods related to the Fundamental Theorem of Projective Geometry and results in spirit of Chow's theorem (13)"-- | |
650 | 0 | 7 | |a Hilbert-Raum |0 (DE-588)4159850-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graßmann-Mannigfaltigkeit |0 (DE-588)4158085-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
653 | 0 | |a Hilbert space | |
653 | 0 | |a Grassmann manifolds | |
653 | 0 | |a Geometry, Projective | |
653 | 0 | |a Quantum theory / Mathematics | |
653 | 0 | |a Geometry, Projective | |
653 | 0 | |a Grassmann manifolds | |
653 | 0 | |a Hilbert space | |
653 | 0 | |a Quantum theory / Mathematics | |
689 | 0 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | 1 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 0 | 2 | |a Graßmann-Mannigfaltigkeit |0 (DE-588)4158085-0 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-108-84839-8 |
830 | 0 | |a London Mathematical Society lecture note series |v 460 |w (DE-604)BV000000130 |9 460 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-031832579 |
Datensatz im Suchindex
_version_ | 1804180964702683136 |
---|---|
any_adam_object | |
author | Pankov, Mark ca. 20./21. Jh |
author_GND | (DE-588)1033189499 |
author_facet | Pankov, Mark ca. 20./21. Jh |
author_role | aut |
author_sort | Pankov, Mark ca. 20./21. Jh |
author_variant | m p mp |
building | Verbundindex |
bvnumber | BV046420126 |
contents | Two lattices -- Geometric transformations of Grassmannians -- Lattices of closed subspaces -- Wigner's theorem and its generalizations -- Compatibility relation -- Applications |
ctrlnum | (OCoLC)1141159630 (DE-599)BVBBV046420126 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03100nam a22005178cb4500</leader><controlfield tag="001">BV046420126</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200901 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200212s2020 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108790918</subfield><subfield code="9">978-1-108-79091-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108790917</subfield><subfield code="9">1108790917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1141159630</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046420126</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pankov, Mark</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1033189499</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wigner-type theorems for Hilbert Grassmannians</subfield><subfield code="c">Mark Pankov, University of Warmia and Mazury in Olsztyn, Poland</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York, NY ; Port Melbourne ; New Delhi ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">vii, 145 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">460</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2002</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Two lattices -- Geometric transformations of Grassmannians -- Lattices of closed subspaces -- Wigner's theorem and its generalizations -- Compatibility relation -- Applications</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Wigner's theorem (67) provides a geometric characterization of unitary and anti-unitary operators as transformations of the set of rays of a complex Hilbert space, or equivalently, rank one projections. This statement plays an important role in mathematical foundations of quantum mechanics (11; 50; 63), since rays (rank one projections) can be identified with pure states of quantum mechanical systems. We present various types of extensions of Wigner's theorem onto Hilbert Grassmannians and their applications. Most of these results were obtained after 2000, but to completeness of the exposition we include some classical theorems closely connected to the main topic (for example, Kakutani-Mackey's result on the lattice of closed subspaces of a complex Banach space (31), Kadison's theorem on transformations preserving the convex structure of the set of states of quantum mechanical systems (30)). We use geometric methods related to the Fundamental Theorem of Projective Geometry and results in spirit of Chow's theorem (13)"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graßmann-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4158085-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Hilbert space</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Grassmann manifolds</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geometry, Projective</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Quantum theory / Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geometry, Projective</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Grassmann manifolds</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Hilbert space</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Quantum theory / Mathematics</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Graßmann-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4158085-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-108-84839-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">460</subfield><subfield code="w">(DE-604)BV000000130</subfield><subfield code="9">460</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031832579</subfield></datafield></record></collection> |
id | DE-604.BV046420126 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:44:08Z |
institution | BVB |
isbn | 9781108790918 1108790917 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031832579 |
oclc_num | 1141159630 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | vii, 145 Seiten |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series | London Mathematical Society lecture note series |
series2 | London Mathematical Society lecture note series |
spelling | Pankov, Mark ca. 20./21. Jh. Verfasser (DE-588)1033189499 aut Wigner-type theorems for Hilbert Grassmannians Mark Pankov, University of Warmia and Mazury in Olsztyn, Poland Cambridge ; New York, NY ; Port Melbourne ; New Delhi ; Singapore Cambridge University Press 2020 vii, 145 Seiten txt rdacontent n rdamedia nc rdacarrier London Mathematical Society lecture note series 460 2002 Two lattices -- Geometric transformations of Grassmannians -- Lattices of closed subspaces -- Wigner's theorem and its generalizations -- Compatibility relation -- Applications "Wigner's theorem (67) provides a geometric characterization of unitary and anti-unitary operators as transformations of the set of rays of a complex Hilbert space, or equivalently, rank one projections. This statement plays an important role in mathematical foundations of quantum mechanics (11; 50; 63), since rays (rank one projections) can be identified with pure states of quantum mechanical systems. We present various types of extensions of Wigner's theorem onto Hilbert Grassmannians and their applications. Most of these results were obtained after 2000, but to completeness of the exposition we include some classical theorems closely connected to the main topic (for example, Kakutani-Mackey's result on the lattice of closed subspaces of a complex Banach space (31), Kadison's theorem on transformations preserving the convex structure of the set of states of quantum mechanical systems (30)). We use geometric methods related to the Fundamental Theorem of Projective Geometry and results in spirit of Chow's theorem (13)"-- Hilbert-Raum (DE-588)4159850-7 gnd rswk-swf Graßmann-Mannigfaltigkeit (DE-588)4158085-0 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Hilbert space Grassmann manifolds Geometry, Projective Quantum theory / Mathematics Quantenmechanik (DE-588)4047989-4 s Hilbert-Raum (DE-588)4159850-7 s Graßmann-Mannigfaltigkeit (DE-588)4158085-0 s DE-604 Erscheint auch als Online-Ausgabe 978-1-108-84839-8 London Mathematical Society lecture note series 460 (DE-604)BV000000130 460 |
spellingShingle | Pankov, Mark ca. 20./21. Jh Wigner-type theorems for Hilbert Grassmannians London Mathematical Society lecture note series Two lattices -- Geometric transformations of Grassmannians -- Lattices of closed subspaces -- Wigner's theorem and its generalizations -- Compatibility relation -- Applications Hilbert-Raum (DE-588)4159850-7 gnd Graßmann-Mannigfaltigkeit (DE-588)4158085-0 gnd Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4159850-7 (DE-588)4158085-0 (DE-588)4047989-4 |
title | Wigner-type theorems for Hilbert Grassmannians |
title_auth | Wigner-type theorems for Hilbert Grassmannians |
title_exact_search | Wigner-type theorems for Hilbert Grassmannians |
title_full | Wigner-type theorems for Hilbert Grassmannians Mark Pankov, University of Warmia and Mazury in Olsztyn, Poland |
title_fullStr | Wigner-type theorems for Hilbert Grassmannians Mark Pankov, University of Warmia and Mazury in Olsztyn, Poland |
title_full_unstemmed | Wigner-type theorems for Hilbert Grassmannians Mark Pankov, University of Warmia and Mazury in Olsztyn, Poland |
title_short | Wigner-type theorems for Hilbert Grassmannians |
title_sort | wigner type theorems for hilbert grassmannians |
topic | Hilbert-Raum (DE-588)4159850-7 gnd Graßmann-Mannigfaltigkeit (DE-588)4158085-0 gnd Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | Hilbert-Raum Graßmann-Mannigfaltigkeit Quantenmechanik |
volume_link | (DE-604)BV000000130 |
work_keys_str_mv | AT pankovmark wignertypetheoremsforhilbertgrassmannians |