Fuzzy modeling and control of uncertain nonlinear systems:
An original, systematic-solution approach to uncertain nonlinear systems control and modeling using fuzzy equations and fuzzy differential equations There are various numerical and analytical approaches to the modeling and control of uncertain nonlinear systems. Fuzzy logic theory is an increasingly...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken
Wiley-IEEE Press
2019
|
Ausgabe: | 1st |
Schriftenreihe: | IEEE Press series on systems science and engineering
|
Schlagworte: | |
Online-Zugang: | FHI01 Volltext |
Zusammenfassung: | An original, systematic-solution approach to uncertain nonlinear systems control and modeling using fuzzy equations and fuzzy differential equations There are various numerical and analytical approaches to the modeling and control of uncertain nonlinear systems. Fuzzy logic theory is an increasingly popular method used to solve inconvenience problems in nonlinear modeling. Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number presents a structured approach to the control and modeling of uncertain nonlinear systems in industry using fuzzy equations and fuzzy differential equations. The first major work to explore methods based on neural networks and Bernstein neural networks, this innovative volume provides a framework for control and modeling of uncertain nonlinear systems with applications to industry. Readers learn how to use fuzzy techniques to solve scientific and engineering problems and understand intelligent control design and applications. The text assembles the results of four years of research on control of uncertain nonlinear systems with dual fuzzy equations, fuzzy modeling for uncertain nonlinear systems with fuzzy equations, the numerical solution of fuzzy equations with Z-numbers, and the numerical solution of fuzzy differential equations with Z-numbers. Using clear and accessible language to explain concepts and principles applicable to real-world scenarios, this book: . Presents the modeling and control of uncertain nonlinear systems with fuzzy equations and fuzzy differential equations. Includes an overview of uncertain nonlinear systems for non-specialists. Teaches readers to use simulation, modeling and verification skills valuable for scientific research and engineering systems development. Reinforces comprehension with illustrations, tables, examples, and simulations Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number is suitable as a textbook for advanced students, academic and industrial researchers, and practitioners in fields of systems engineering, learning control systems, neural networks, computational intelligence, and fuzzy logic control |
Beschreibung: | <P>List of Figures xi</p> <p>List of Tables xiii</p> <p>Preface xv</p> <p><b>1 Fuzzy Equations </b><b>1</b></p> <p>1.1 Introduction 1</p> <p>1.2 Fuzzy Equations 1</p> <p>1.3 Algebraic Fuzzy Equations 3</p> <p>1.4 Numerical Methods for Solving Fuzzy Equations 5</p> <p>1.4.1 Newton Method 5</p> <p>1.4.2 Steepest Descent Method 7</p> <p>1.4.3 Adomian Decomposition Method 8</p> <p>1.4.4 Ranking Method 9</p> <p>1.4.5 Intelligent Methods 10</p> <p>1.4.5.1 Genetic Algorithm Method 10</p> <p>1.4.5.2 Neural Network Method 11</p> <p>1.4.5.3 Fuzzy Linear Regression Model 14</p> <p>1.5 Summary 20</p> <p><b>2 Fuzzy Differential Equations </b><b>21</b></p> <p>2.1 Introduction 21</p> <p>2.2 Predictor-Corrector Method 21</p> <p>2.3 Adomian Decomposition Method 23</p> <p>2.4 Euler Method 23</p> <p>2.5 Taylor Method 25</p> <p>2.6 Runge-Kutta Method 25</p> <p>2.7 Finite Difference Method 26</p> <p>2.8 Differential Transform Method 28</p> <p>2.9 Neural Network Method 29</p> <p>2.10 Summary 36</p> . - <p><b>3 Modeling and Control Using Fuzzy Equations </b><b>39</b></p> <p>3.1 Fuzzy Modeling with Fuzzy Equations 39</p> <p>3.1.1 Fuzzy Parameter Estimation with Neural Networks 45</p> <p>3.1.2 Upper Bounds of the Modeling Errors 48</p> <p>3.2 Control with Fuzzy Equations 52</p> <p>3.3 Simulations 59</p> <p>3.4 Summary 67</p> <p><b>4 Modeling and Control Using Fuzzy Differential Equations </b><b>69</b></p> <p>4.1 Introduction 69</p> <p>4.2 Fuzzy Modeling with Fuzzy Differential Equations 69</p> <p>4.3 Existence of a Solution 72</p> <p>4.4 Solution Approximation using Bernstein Neural Networks 79</p> <p>4.5 Solutions Approximation using the Fuzzy Sumudu Transform 83</p> <p>4.6 Simulations 85</p> <p>4.7 Summary 99</p> <p><b>5 System Modeling with Partial Differential Equations </b><b>101</b></p> <p>5.1 Introduction 101</p> <p>5.2 Solutions using Burgers-Fisher Equations 101</p> <p>5.3 Solution using Wave Equations 106</p> <p>5.4 Simulations 109</p> <p>5.5 Summary 117</p> <p><b>6 System CIP data; resource not viewed |
Beschreibung: | 1 Online-Resource (208 pages) |
ISBN: | 9781119491514 1119491525 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046418534 | ||
003 | DE-604 | ||
005 | 20201215 | ||
007 | cr|uuu---uuuuu | ||
008 | 200211s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781119491514 |9 978-1-119-49151-4 | ||
020 | |a 1119491525 |9 1-119-49152-5 | ||
024 | 7 | |a 10.1002/9781119491514 |2 doi | |
035 | |a (ZDB-35-WEL)8826425 | ||
035 | |a (OCoLC)1141114404 | ||
035 | |a (DE-599)BVBBV046418534 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-573 | ||
082 | 0 | |a 629.836 |2 23 | |
100 | 1 | |a Yu, Wen |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fuzzy modeling and control of uncertain nonlinear systems |c Wen Yu, Raheleh Jafari |
250 | |a 1st | ||
264 | 1 | |a Hoboken |b Wiley-IEEE Press |c 2019 | |
300 | |a 1 Online-Resource (208 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a IEEE Press series on systems science and engineering | |
500 | |a <P>List of Figures xi</p> <p>List of Tables xiii</p> <p>Preface xv</p> <p><b>1 Fuzzy Equations </b><b>1</b></p> <p>1.1 Introduction 1</p> <p>1.2 Fuzzy Equations 1</p> <p>1.3 Algebraic Fuzzy Equations 3</p> <p>1.4 Numerical Methods for Solving Fuzzy Equations 5</p> <p>1.4.1 Newton Method 5</p> <p>1.4.2 Steepest Descent Method 7</p> <p>1.4.3 Adomian Decomposition Method 8</p> <p>1.4.4 Ranking Method 9</p> <p>1.4.5 Intelligent Methods 10</p> <p>1.4.5.1 Genetic Algorithm Method 10</p> <p>1.4.5.2 Neural Network Method 11</p> <p>1.4.5.3 Fuzzy Linear Regression Model 14</p> <p>1.5 Summary 20</p> <p><b>2 Fuzzy Differential Equations </b><b>21</b></p> <p>2.1 Introduction 21</p> <p>2.2 Predictor-Corrector Method 21</p> <p>2.3 Adomian Decomposition Method 23</p> <p>2.4 Euler Method 23</p> <p>2.5 Taylor Method 25</p> <p>2.6 Runge-Kutta Method 25</p> <p>2.7 Finite Difference Method 26</p> <p>2.8 Differential Transform Method 28</p> <p>2.9 Neural Network Method 29</p> <p>2.10 Summary 36</p> . - <p><b>3 Modeling and Control Using Fuzzy Equations </b><b>39</b></p> <p>3.1 Fuzzy Modeling with Fuzzy Equations 39</p> <p>3.1.1 Fuzzy Parameter Estimation with Neural Networks 45</p> <p>3.1.2 Upper Bounds of the Modeling Errors 48</p> <p>3.2 Control with Fuzzy Equations 52</p> <p>3.3 Simulations 59</p> <p>3.4 Summary 67</p> <p><b>4 Modeling and Control Using Fuzzy Differential Equations </b><b>69</b></p> <p>4.1 Introduction 69</p> <p>4.2 Fuzzy Modeling with Fuzzy Differential Equations 69</p> <p>4.3 Existence of a Solution 72</p> <p>4.4 Solution Approximation using Bernstein Neural Networks 79</p> <p>4.5 Solutions Approximation using the Fuzzy Sumudu Transform 83</p> <p>4.6 Simulations 85</p> <p>4.7 Summary 99</p> <p><b>5 System Modeling with Partial Differential Equations </b><b>101</b></p> <p>5.1 Introduction 101</p> <p>5.2 Solutions using Burgers-Fisher Equations 101</p> <p>5.3 Solution using Wave Equations 106</p> <p>5.4 Simulations 109</p> <p>5.5 Summary 117</p> <p><b>6 System | ||
500 | |a CIP data; resource not viewed | ||
520 | |a An original, systematic-solution approach to uncertain nonlinear systems control and modeling using fuzzy equations and fuzzy differential equations There are various numerical and analytical approaches to the modeling and control of uncertain nonlinear systems. Fuzzy logic theory is an increasingly popular method used to solve inconvenience problems in nonlinear modeling. Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number presents a structured approach to the control and modeling of uncertain nonlinear systems in industry using fuzzy equations and fuzzy differential equations. The first major work to explore methods based on neural networks and Bernstein neural networks, this innovative volume provides a framework for control and modeling of uncertain nonlinear systems with applications to industry. Readers learn how to use fuzzy techniques to solve scientific and engineering problems and understand intelligent control design and applications. | ||
520 | |a The text assembles the results of four years of research on control of uncertain nonlinear systems with dual fuzzy equations, fuzzy modeling for uncertain nonlinear systems with fuzzy equations, the numerical solution of fuzzy equations with Z-numbers, and the numerical solution of fuzzy differential equations with Z-numbers. Using clear and accessible language to explain concepts and principles applicable to real-world scenarios, this book: . Presents the modeling and control of uncertain nonlinear systems with fuzzy equations and fuzzy differential equations. Includes an overview of uncertain nonlinear systems for non-specialists. Teaches readers to use simulation, modeling and verification skills valuable for scientific research and engineering systems development. | ||
520 | |a Reinforces comprehension with illustrations, tables, examples, and simulations Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number is suitable as a textbook for advanced students, academic and industrial researchers, and practitioners in fields of systems engineering, learning control systems, neural networks, computational intelligence, and fuzzy logic control | ||
650 | 4 | |a Nonlinear systems |x Automatic control |x Mathematics | |
650 | 4 | |a Fuzzy mathematics | |
700 | 1 | |a Jafari, Raheleh |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781119491552 |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=8826425 |x Aggregator |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-35-WEL | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031831005 | ||
966 | e | |u https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=8826425 |l FHI01 |p ZDB-35-WEL |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180962048737280 |
---|---|
any_adam_object | |
author | Yu, Wen |
author_facet | Yu, Wen |
author_role | aut |
author_sort | Yu, Wen |
author_variant | w y wy |
building | Verbundindex |
bvnumber | BV046418534 |
collection | ZDB-35-WEL |
ctrlnum | (ZDB-35-WEL)8826425 (OCoLC)1141114404 (DE-599)BVBBV046418534 |
dewey-full | 629.836 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.836 |
dewey-search | 629.836 |
dewey-sort | 3629.836 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
edition | 1st |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05758nmm a2200469zc 4500</leader><controlfield tag="001">BV046418534</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200211s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119491514</subfield><subfield code="9">978-1-119-49151-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119491525</subfield><subfield code="9">1-119-49152-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9781119491514</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-35-WEL)8826425</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1141114404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046418534</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.836</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Wen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fuzzy modeling and control of uncertain nonlinear systems</subfield><subfield code="c">Wen Yu, Raheleh Jafari</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken</subfield><subfield code="b">Wiley-IEEE Press</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Resource (208 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IEEE Press series on systems science and engineering</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"><P>List of Figures xi</p> <p>List of Tables xiii</p> <p>Preface xv</p> <p><b>1 Fuzzy Equations </b><b>1</b></p> <p>1.1 Introduction 1</p> <p>1.2 Fuzzy Equations 1</p> <p>1.3 Algebraic Fuzzy Equations 3</p> <p>1.4 Numerical Methods for Solving Fuzzy Equations 5</p> <p>1.4.1 Newton Method 5</p> <p>1.4.2 Steepest Descent Method 7</p> <p>1.4.3 Adomian Decomposition Method 8</p> <p>1.4.4 Ranking Method 9</p> <p>1.4.5 Intelligent Methods 10</p> <p>1.4.5.1 Genetic Algorithm Method 10</p> <p>1.4.5.2 Neural Network Method 11</p> <p>1.4.5.3 Fuzzy Linear Regression Model 14</p> <p>1.5 Summary 20</p> <p><b>2 Fuzzy Differential Equations </b><b>21</b></p> <p>2.1 Introduction 21</p> <p>2.2 Predictor-Corrector Method 21</p> <p>2.3 Adomian Decomposition Method 23</p> <p>2.4 Euler Method 23</p> <p>2.5 Taylor Method 25</p> <p>2.6 Runge-Kutta Method 25</p> <p>2.7 Finite Difference Method 26</p> <p>2.8 Differential Transform Method 28</p> <p>2.9 Neural Network Method 29</p> <p>2.10 Summary 36</p> . - <p><b>3 Modeling and Control Using Fuzzy Equations </b><b>39</b></p> <p>3.1 Fuzzy Modeling with Fuzzy Equations 39</p> <p>3.1.1 Fuzzy Parameter Estimation with Neural Networks 45</p> <p>3.1.2 Upper Bounds of the Modeling Errors 48</p> <p>3.2 Control with Fuzzy Equations 52</p> <p>3.3 Simulations 59</p> <p>3.4 Summary 67</p> <p><b>4 Modeling and Control Using Fuzzy Differential Equations </b><b>69</b></p> <p>4.1 Introduction 69</p> <p>4.2 Fuzzy Modeling with Fuzzy Differential Equations 69</p> <p>4.3 Existence of a Solution 72</p> <p>4.4 Solution Approximation using Bernstein Neural Networks 79</p> <p>4.5 Solutions Approximation using the Fuzzy Sumudu Transform 83</p> <p>4.6 Simulations 85</p> <p>4.7 Summary 99</p> <p><b>5 System Modeling with Partial Differential Equations </b><b>101</b></p> <p>5.1 Introduction 101</p> <p>5.2 Solutions using Burgers-Fisher Equations 101</p> <p>5.3 Solution using Wave Equations 106</p> <p>5.4 Simulations 109</p> <p>5.5 Summary 117</p> <p><b>6 System </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">CIP data; resource not viewed</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An original, systematic-solution approach to uncertain nonlinear systems control and modeling using fuzzy equations and fuzzy differential equations There are various numerical and analytical approaches to the modeling and control of uncertain nonlinear systems. Fuzzy logic theory is an increasingly popular method used to solve inconvenience problems in nonlinear modeling. Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number presents a structured approach to the control and modeling of uncertain nonlinear systems in industry using fuzzy equations and fuzzy differential equations. The first major work to explore methods based on neural networks and Bernstein neural networks, this innovative volume provides a framework for control and modeling of uncertain nonlinear systems with applications to industry. Readers learn how to use fuzzy techniques to solve scientific and engineering problems and understand intelligent control design and applications. </subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The text assembles the results of four years of research on control of uncertain nonlinear systems with dual fuzzy equations, fuzzy modeling for uncertain nonlinear systems with fuzzy equations, the numerical solution of fuzzy equations with Z-numbers, and the numerical solution of fuzzy differential equations with Z-numbers. Using clear and accessible language to explain concepts and principles applicable to real-world scenarios, this book: . Presents the modeling and control of uncertain nonlinear systems with fuzzy equations and fuzzy differential equations. Includes an overview of uncertain nonlinear systems for non-specialists. Teaches readers to use simulation, modeling and verification skills valuable for scientific research and engineering systems development. </subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reinforces comprehension with illustrations, tables, examples, and simulations Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number is suitable as a textbook for advanced students, academic and industrial researchers, and practitioners in fields of systems engineering, learning control systems, neural networks, computational intelligence, and fuzzy logic control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear systems</subfield><subfield code="x">Automatic control</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy mathematics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jafari, Raheleh</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781119491552</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=8826425</subfield><subfield code="x">Aggregator</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WEL</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031831005</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=8826425</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046418534 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:44:05Z |
institution | BVB |
isbn | 9781119491514 1119491525 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031831005 |
oclc_num | 1141114404 |
open_access_boolean | |
owner | DE-573 |
owner_facet | DE-573 |
physical | 1 Online-Resource (208 pages) |
psigel | ZDB-35-WEL |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Wiley-IEEE Press |
record_format | marc |
series2 | IEEE Press series on systems science and engineering |
spelling | Yu, Wen Verfasser aut Fuzzy modeling and control of uncertain nonlinear systems Wen Yu, Raheleh Jafari 1st Hoboken Wiley-IEEE Press 2019 1 Online-Resource (208 pages) txt rdacontent c rdamedia cr rdacarrier IEEE Press series on systems science and engineering <P>List of Figures xi</p> <p>List of Tables xiii</p> <p>Preface xv</p> <p><b>1 Fuzzy Equations </b><b>1</b></p> <p>1.1 Introduction 1</p> <p>1.2 Fuzzy Equations 1</p> <p>1.3 Algebraic Fuzzy Equations 3</p> <p>1.4 Numerical Methods for Solving Fuzzy Equations 5</p> <p>1.4.1 Newton Method 5</p> <p>1.4.2 Steepest Descent Method 7</p> <p>1.4.3 Adomian Decomposition Method 8</p> <p>1.4.4 Ranking Method 9</p> <p>1.4.5 Intelligent Methods 10</p> <p>1.4.5.1 Genetic Algorithm Method 10</p> <p>1.4.5.2 Neural Network Method 11</p> <p>1.4.5.3 Fuzzy Linear Regression Model 14</p> <p>1.5 Summary 20</p> <p><b>2 Fuzzy Differential Equations </b><b>21</b></p> <p>2.1 Introduction 21</p> <p>2.2 Predictor-Corrector Method 21</p> <p>2.3 Adomian Decomposition Method 23</p> <p>2.4 Euler Method 23</p> <p>2.5 Taylor Method 25</p> <p>2.6 Runge-Kutta Method 25</p> <p>2.7 Finite Difference Method 26</p> <p>2.8 Differential Transform Method 28</p> <p>2.9 Neural Network Method 29</p> <p>2.10 Summary 36</p> . - <p><b>3 Modeling and Control Using Fuzzy Equations </b><b>39</b></p> <p>3.1 Fuzzy Modeling with Fuzzy Equations 39</p> <p>3.1.1 Fuzzy Parameter Estimation with Neural Networks 45</p> <p>3.1.2 Upper Bounds of the Modeling Errors 48</p> <p>3.2 Control with Fuzzy Equations 52</p> <p>3.3 Simulations 59</p> <p>3.4 Summary 67</p> <p><b>4 Modeling and Control Using Fuzzy Differential Equations </b><b>69</b></p> <p>4.1 Introduction 69</p> <p>4.2 Fuzzy Modeling with Fuzzy Differential Equations 69</p> <p>4.3 Existence of a Solution 72</p> <p>4.4 Solution Approximation using Bernstein Neural Networks 79</p> <p>4.5 Solutions Approximation using the Fuzzy Sumudu Transform 83</p> <p>4.6 Simulations 85</p> <p>4.7 Summary 99</p> <p><b>5 System Modeling with Partial Differential Equations </b><b>101</b></p> <p>5.1 Introduction 101</p> <p>5.2 Solutions using Burgers-Fisher Equations 101</p> <p>5.3 Solution using Wave Equations 106</p> <p>5.4 Simulations 109</p> <p>5.5 Summary 117</p> <p><b>6 System CIP data; resource not viewed An original, systematic-solution approach to uncertain nonlinear systems control and modeling using fuzzy equations and fuzzy differential equations There are various numerical and analytical approaches to the modeling and control of uncertain nonlinear systems. Fuzzy logic theory is an increasingly popular method used to solve inconvenience problems in nonlinear modeling. Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number presents a structured approach to the control and modeling of uncertain nonlinear systems in industry using fuzzy equations and fuzzy differential equations. The first major work to explore methods based on neural networks and Bernstein neural networks, this innovative volume provides a framework for control and modeling of uncertain nonlinear systems with applications to industry. Readers learn how to use fuzzy techniques to solve scientific and engineering problems and understand intelligent control design and applications. The text assembles the results of four years of research on control of uncertain nonlinear systems with dual fuzzy equations, fuzzy modeling for uncertain nonlinear systems with fuzzy equations, the numerical solution of fuzzy equations with Z-numbers, and the numerical solution of fuzzy differential equations with Z-numbers. Using clear and accessible language to explain concepts and principles applicable to real-world scenarios, this book: . Presents the modeling and control of uncertain nonlinear systems with fuzzy equations and fuzzy differential equations. Includes an overview of uncertain nonlinear systems for non-specialists. Teaches readers to use simulation, modeling and verification skills valuable for scientific research and engineering systems development. Reinforces comprehension with illustrations, tables, examples, and simulations Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number is suitable as a textbook for advanced students, academic and industrial researchers, and practitioners in fields of systems engineering, learning control systems, neural networks, computational intelligence, and fuzzy logic control Nonlinear systems Automatic control Mathematics Fuzzy mathematics Jafari, Raheleh Sonstige oth Erscheint auch als Druck-Ausgabe 9781119491552 https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=8826425 Aggregator URL des Erstveröffentlichers Volltext |
spellingShingle | Yu, Wen Fuzzy modeling and control of uncertain nonlinear systems Nonlinear systems Automatic control Mathematics Fuzzy mathematics |
title | Fuzzy modeling and control of uncertain nonlinear systems |
title_auth | Fuzzy modeling and control of uncertain nonlinear systems |
title_exact_search | Fuzzy modeling and control of uncertain nonlinear systems |
title_full | Fuzzy modeling and control of uncertain nonlinear systems Wen Yu, Raheleh Jafari |
title_fullStr | Fuzzy modeling and control of uncertain nonlinear systems Wen Yu, Raheleh Jafari |
title_full_unstemmed | Fuzzy modeling and control of uncertain nonlinear systems Wen Yu, Raheleh Jafari |
title_short | Fuzzy modeling and control of uncertain nonlinear systems |
title_sort | fuzzy modeling and control of uncertain nonlinear systems |
topic | Nonlinear systems Automatic control Mathematics Fuzzy mathematics |
topic_facet | Nonlinear systems Automatic control Mathematics Fuzzy mathematics |
url | https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=8826425 |
work_keys_str_mv | AT yuwen fuzzymodelingandcontrolofuncertainnonlinearsystems AT jafariraheleh fuzzymodelingandcontrolofuncertainnonlinearsystems |