Steinberg groups for Jordan pairs:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Birkhäuser
[2019]
|
Schriftenreihe: | Progress in mathematics
332 |
Schlagworte: | |
Online-Zugang: | BTU01 FHN01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBA01 UBM01 UBT01 UBW01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (xii, 458 Seiten) Illustrationen |
ISBN: | 9781071602645 |
DOI: | 10.1007/978-1-0716-0264-5 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV046403580 | ||
003 | DE-604 | ||
005 | 20220208 | ||
007 | cr|uuu---uuuuu | ||
008 | 200203s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781071602645 |c Online |9 978-1-07-160264-5 | ||
024 | 7 | |a 10.1007/978-1-0716-0264-5 |2 doi | |
035 | |a (ZDB-2-SMA)9781071602645 | ||
035 | |a (OCoLC)1140125739 | ||
035 | |a (DE-599)BVBBV046403580 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-384 |a DE-898 |a DE-861 |a DE-523 |a DE-703 |a DE-863 |a DE-20 |a DE-739 |a DE-634 |a DE-862 |a DE-92 |a DE-824 |a DE-11 | ||
082 | 0 | |a 512.48 |2 23 | |
084 | |a ST 230 |0 (DE-625)143617: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Loos, Ottmar |e Verfasser |0 (DE-588)1204224560 |4 aut | |
245 | 1 | 0 | |a Steinberg groups for Jordan pairs |c Ottmar Loos, Erhard Neher |
264 | 1 | |a New York, NY |b Birkhäuser |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a 1 Online-Ressource (xii, 458 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics |v volume 332 | |
650 | 4 | |a Non-associative Rings and Algebras | |
650 | 4 | |a K-Theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Nonassociative rings | |
650 | 4 | |a Rings (Algebra) | |
650 | 4 | |a K-theory | |
650 | 4 | |a Number theory | |
650 | 4 | |a Group theory | |
650 | 0 | 7 | |a Steinberg-Gruppe |0 (DE-588)4202757-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Jordan-Algebra |0 (DE-588)4162770-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Jordan-Tripelsystem |0 (DE-588)4162771-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wurzelsystem |g Mathematik |0 (DE-588)4418745-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Jordan-Algebra |0 (DE-588)4162770-2 |D s |
689 | 0 | 1 | |a Steinberg-Gruppe |0 (DE-588)4202757-3 |D s |
689 | 0 | 2 | |a Jordan-Tripelsystem |0 (DE-588)4162771-4 |D s |
689 | 0 | 3 | |a Wurzelsystem |g Mathematik |0 (DE-588)4418745-2 |D s |
689 | 0 | 4 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Neher, Erhard |d 1949- |e Verfasser |0 (DE-588)109219244 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-07-160262-1 |
830 | 0 | |a Progress in mathematics |v 332 |w (DE-604)BV035421267 |9 332 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-0716-0264-5 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2019 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-031816302 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-0716-0264-5 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-0716-0264-5 |l FHN01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-0716-0264-5 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-0716-0264-5 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-0716-0264-5 |l FWS01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-0716-0264-5 |l FWS02 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-0716-0264-5 |l HTW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-0716-0264-5 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-0716-0264-5 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-0716-0264-5 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-0716-0264-5 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-0716-0264-5 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-0716-0264-5 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-0716-0264-5 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 748165 |
---|---|
_version_ | 1806190624081182720 |
any_adam_object | |
author | Loos, Ottmar Neher, Erhard 1949- |
author_GND | (DE-588)1204224560 (DE-588)109219244 |
author_facet | Loos, Ottmar Neher, Erhard 1949- |
author_role | aut aut |
author_sort | Loos, Ottmar |
author_variant | o l ol e n en |
building | Verbundindex |
bvnumber | BV046403580 |
classification_rvk | ST 230 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9781071602645 (OCoLC)1140125739 (DE-599)BVBBV046403580 |
dewey-full | 512.48 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.48 |
dewey-search | 512.48 |
dewey-sort | 3512.48 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
doi_str_mv | 10.1007/978-1-0716-0264-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03900nmm a2200829 cb4500</leader><controlfield tag="001">BV046403580</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220208 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200203s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781071602645</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-07-160264-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-0716-0264-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9781071602645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1140125739</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046403580</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.48</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 230</subfield><subfield code="0">(DE-625)143617:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Loos, Ottmar</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1204224560</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Steinberg groups for Jordan pairs</subfield><subfield code="c">Ottmar Loos, Erhard Neher</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 458 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">volume 332</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-associative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonassociative rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rings (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Steinberg-Gruppe</subfield><subfield code="0">(DE-588)4202757-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Jordan-Algebra</subfield><subfield code="0">(DE-588)4162770-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Jordan-Tripelsystem</subfield><subfield code="0">(DE-588)4162771-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wurzelsystem</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4418745-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Jordan-Algebra</subfield><subfield code="0">(DE-588)4162770-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Steinberg-Gruppe</subfield><subfield code="0">(DE-588)4202757-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Jordan-Tripelsystem</subfield><subfield code="0">(DE-588)4162771-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Wurzelsystem</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4418745-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neher, Erhard</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)109219244</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-07-160262-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">332</subfield><subfield code="w">(DE-604)BV035421267</subfield><subfield code="9">332</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-0716-0264-5</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2019</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031816302</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0264-5</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0264-5</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0264-5</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0264-5</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0264-5</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0264-5</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0264-5</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0264-5</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0264-5</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0264-5</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0264-5</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0264-5</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0264-5</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0264-5</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046403580 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T15:06:48Z |
institution | BVB |
isbn | 9781071602645 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031816302 |
oclc_num | 1140125739 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-384 DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-92 DE-824 DE-11 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-384 DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-92 DE-824 DE-11 |
physical | 1 Online-Ressource (xii, 458 Seiten) Illustrationen |
psigel | ZDB-2-SMA ZDB-2-SMA_2019 |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematics |
series2 | Progress in mathematics |
spellingShingle | Loos, Ottmar Neher, Erhard 1949- Steinberg groups for Jordan pairs Progress in mathematics Non-associative Rings and Algebras K-Theory Number Theory Group Theory and Generalizations Nonassociative rings Rings (Algebra) K-theory Number theory Group theory Steinberg-Gruppe (DE-588)4202757-3 gnd Jordan-Algebra (DE-588)4162770-2 gnd Jordan-Tripelsystem (DE-588)4162771-4 gnd Graphentheorie (DE-588)4113782-6 gnd Wurzelsystem Mathematik (DE-588)4418745-2 gnd |
subject_GND | (DE-588)4202757-3 (DE-588)4162770-2 (DE-588)4162771-4 (DE-588)4113782-6 (DE-588)4418745-2 |
title | Steinberg groups for Jordan pairs |
title_auth | Steinberg groups for Jordan pairs |
title_exact_search | Steinberg groups for Jordan pairs |
title_full | Steinberg groups for Jordan pairs Ottmar Loos, Erhard Neher |
title_fullStr | Steinberg groups for Jordan pairs Ottmar Loos, Erhard Neher |
title_full_unstemmed | Steinberg groups for Jordan pairs Ottmar Loos, Erhard Neher |
title_short | Steinberg groups for Jordan pairs |
title_sort | steinberg groups for jordan pairs |
topic | Non-associative Rings and Algebras K-Theory Number Theory Group Theory and Generalizations Nonassociative rings Rings (Algebra) K-theory Number theory Group theory Steinberg-Gruppe (DE-588)4202757-3 gnd Jordan-Algebra (DE-588)4162770-2 gnd Jordan-Tripelsystem (DE-588)4162771-4 gnd Graphentheorie (DE-588)4113782-6 gnd Wurzelsystem Mathematik (DE-588)4418745-2 gnd |
topic_facet | Non-associative Rings and Algebras K-Theory Number Theory Group Theory and Generalizations Nonassociative rings Rings (Algebra) K-theory Number theory Group theory Steinberg-Gruppe Jordan-Algebra Jordan-Tripelsystem Graphentheorie Wurzelsystem Mathematik |
url | https://doi.org/10.1007/978-1-0716-0264-5 |
volume_link | (DE-604)BV035421267 |
work_keys_str_mv | AT loosottmar steinberggroupsforjordanpairs AT nehererhard steinberggroupsforjordanpairs |