Conceptions of set and the foundations of mathematics:
Sets are central to mathematics and its foundations, but what are they? In this book Luca Incurvati provides a detailed examination of all the major conceptions of set and discusses their virtues and shortcomings, as well as introducing the fundamentals of the alternative set theories with which the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore
Cambridge University Press
2020
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 FUBA1 TUM01 UBA01 UBG01 URL des Erstveröffentlichers |
Zusammenfassung: | Sets are central to mathematics and its foundations, but what are they? In this book Luca Incurvati provides a detailed examination of all the major conceptions of set and discusses their virtues and shortcomings, as well as introducing the fundamentals of the alternative set theories with which these conceptions are associated. He shows that the conceptual landscape includes not only the naive and iterative conceptions but also the limitation of size conception, the definite conception, the stratified conception and the graph conception. In addition, he presents a novel, minimalist account of the iterative conception which does not require the existence of a relation of metaphysical dependence between a set and its members. His book will be of interest to researchers and advanced students in logic and the philosophy of mathematics |
Beschreibung: | 1 Online-Ressource (xv, 238 Seiten) Illustrationen |
ISBN: | 9781108596961 |
DOI: | 10.1017/9781108596961 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV046402052 | ||
003 | DE-604 | ||
005 | 20211214 | ||
007 | cr|uuu---uuuuu | ||
008 | 200203s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781108596961 |c Online |9 978-1-108-59696-1 | ||
024 | 7 | |a 10.1017/9781108596961 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108596961 | ||
035 | |a (OCoLC)1140174785 | ||
035 | |a (DE-599)BVBBV046402052 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-12 |a DE-92 |a DE-473 |a DE-188 |a DE-91 | ||
100 | 1 | |a Incurvati, Luca |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1205267743 |4 aut | |
245 | 1 | 0 | |a Conceptions of set and the foundations of mathematics |c Luca Incurvati (University of Amsterdam) |
264 | 1 | |a Cambridge, United Kingdom ; New York, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (xv, 238 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Sets are central to mathematics and its foundations, but what are they? In this book Luca Incurvati provides a detailed examination of all the major conceptions of set and discusses their virtues and shortcomings, as well as introducing the fundamentals of the alternative set theories with which these conceptions are associated. He shows that the conceptual landscape includes not only the naive and iterative conceptions but also the limitation of size conception, the definite conception, the stratified conception and the graph conception. In addition, he presents a novel, minimalist account of the iterative conception which does not require the existence of a relation of metaphysical dependence between a set and its members. His book will be of interest to researchers and advanced students in logic and the philosophy of mathematics | ||
650 | 4 | |a Set theory | |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 0 | |5 DE-188 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-108-49782-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108596961 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO |a ZDB-20-CPP |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031814792 | ||
966 | e | |u https://doi.org/10.1017/9781108596961 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108596961 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108596961 |l FUBA1 |p ZDB-20-CPP |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6028970 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108596961 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108596961 |l UBG01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180933399543808 |
---|---|
any_adam_object | |
author | Incurvati, Luca ca. 20./21. Jh |
author_GND | (DE-588)1205267743 |
author_facet | Incurvati, Luca ca. 20./21. Jh |
author_role | aut |
author_sort | Incurvati, Luca ca. 20./21. Jh |
author_variant | l i li |
building | Verbundindex |
bvnumber | BV046402052 |
collection | ZDB-20-CBO ZDB-20-CPP ZDB-30-PQE |
ctrlnum | (ZDB-20-CBO)CR9781108596961 (OCoLC)1140174785 (DE-599)BVBBV046402052 |
doi_str_mv | 10.1017/9781108596961 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02958nmm a2200445 c 4500</leader><controlfield tag="001">BV046402052</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200203s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108596961</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-59696-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108596961</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108596961</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1140174785</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046402052</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Incurvati, Luca</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1205267743</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conceptions of set and the foundations of mathematics</subfield><subfield code="c">Luca Incurvati (University of Amsterdam)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 238 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sets are central to mathematics and its foundations, but what are they? In this book Luca Incurvati provides a detailed examination of all the major conceptions of set and discusses their virtues and shortcomings, as well as introducing the fundamentals of the alternative set theories with which these conceptions are associated. He shows that the conceptual landscape includes not only the naive and iterative conceptions but also the limitation of size conception, the definite conception, the stratified conception and the graph conception. In addition, he presents a novel, minimalist account of the iterative conception which does not require the existence of a relation of metaphysical dependence between a set and its members. His book will be of interest to researchers and advanced students in logic and the philosophy of mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-108-49782-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108596961</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield><subfield code="a">ZDB-20-CPP</subfield><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031814792</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108596961</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108596961</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108596961</subfield><subfield code="l">FUBA1</subfield><subfield code="p">ZDB-20-CPP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6028970</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108596961</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108596961</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046402052 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:43:38Z |
institution | BVB |
isbn | 9781108596961 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031814792 |
oclc_num | 1140174785 |
open_access_boolean | |
owner | DE-384 DE-12 DE-92 DE-473 DE-BY-UBG DE-188 DE-91 DE-BY-TUM |
owner_facet | DE-384 DE-12 DE-92 DE-473 DE-BY-UBG DE-188 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xv, 238 Seiten) Illustrationen |
psigel | ZDB-20-CBO ZDB-20-CPP ZDB-30-PQE ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Incurvati, Luca ca. 20./21. Jh. Verfasser (DE-588)1205267743 aut Conceptions of set and the foundations of mathematics Luca Incurvati (University of Amsterdam) Cambridge, United Kingdom ; New York, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore Cambridge University Press 2020 1 Online-Ressource (xv, 238 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Sets are central to mathematics and its foundations, but what are they? In this book Luca Incurvati provides a detailed examination of all the major conceptions of set and discusses their virtues and shortcomings, as well as introducing the fundamentals of the alternative set theories with which these conceptions are associated. He shows that the conceptual landscape includes not only the naive and iterative conceptions but also the limitation of size conception, the definite conception, the stratified conception and the graph conception. In addition, he presents a novel, minimalist account of the iterative conception which does not require the existence of a relation of metaphysical dependence between a set and its members. His book will be of interest to researchers and advanced students in logic and the philosophy of mathematics Set theory Mengenlehre (DE-588)4074715-3 gnd rswk-swf Mengenlehre (DE-588)4074715-3 s DE-188 Erscheint auch als Druck-Ausgabe, Hardcover 978-1-108-49782-4 https://doi.org/10.1017/9781108596961 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Incurvati, Luca ca. 20./21. Jh Conceptions of set and the foundations of mathematics Set theory Mengenlehre (DE-588)4074715-3 gnd |
subject_GND | (DE-588)4074715-3 |
title | Conceptions of set and the foundations of mathematics |
title_auth | Conceptions of set and the foundations of mathematics |
title_exact_search | Conceptions of set and the foundations of mathematics |
title_full | Conceptions of set and the foundations of mathematics Luca Incurvati (University of Amsterdam) |
title_fullStr | Conceptions of set and the foundations of mathematics Luca Incurvati (University of Amsterdam) |
title_full_unstemmed | Conceptions of set and the foundations of mathematics Luca Incurvati (University of Amsterdam) |
title_short | Conceptions of set and the foundations of mathematics |
title_sort | conceptions of set and the foundations of mathematics |
topic | Set theory Mengenlehre (DE-588)4074715-3 gnd |
topic_facet | Set theory Mengenlehre |
url | https://doi.org/10.1017/9781108596961 |
work_keys_str_mv | AT incurvatiluca conceptionsofsetandthefoundationsofmathematics |