Geometric regular polytopes:
Regular polytopes and their symmetry have a long history stretching back two and a half millennia, to the classical regular polygons and polyhedra. Much of modern research focuses on abstract regular polytopes, but significant recent developments have been made on the geometric side, including the e...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore
Cambridge University Press
2020
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
172 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 TUM01 TUM02 UBA01 Volltext |
Zusammenfassung: | Regular polytopes and their symmetry have a long history stretching back two and a half millennia, to the classical regular polygons and polyhedra. Much of modern research focuses on abstract regular polytopes, but significant recent developments have been made on the geometric side, including the exploration of new topics such as realizations and rigidity, which offer a different way of understanding the geometric and combinatorial symmetry of polytopes. This is the first comprehensive account of the modern geometric theory, and includes a wide range of applications, along with new techniques. While the author explores the subject in depth, his elementary approach to traditional areas such as finite reflexion groups makes this book suitable for beginning graduate students as well as more experienced researchers |
Beschreibung: | 1 Online-Ressource (xi, 603 Seiten) Illustrationen |
ISBN: | 9781108778992 |
DOI: | 10.1017/9781108778992 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV046401896 | ||
003 | DE-604 | ||
005 | 20211130 | ||
007 | cr|uuu---uuuuu | ||
008 | 200203s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781108778992 |c Online |9 978-1-108-77899-2 | ||
024 | 7 | |a 10.1017/9781108778992 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108778992 | ||
035 | |a (OCoLC)1145170209 | ||
035 | |a (DE-599)BVBBV046401896 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-12 |a DE-92 |a DE-91G | ||
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
084 | |a MAT 525 |2 stub | ||
100 | 1 | |a McMullen, Peter |d 1942- |e Verfasser |0 (DE-588)1097306666 |4 aut | |
245 | 1 | 0 | |a Geometric regular polytopes |c Peter McMullen |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (xi, 603 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications |v 172 | |
520 | |a Regular polytopes and their symmetry have a long history stretching back two and a half millennia, to the classical regular polygons and polyhedra. Much of modern research focuses on abstract regular polytopes, but significant recent developments have been made on the geometric side, including the exploration of new topics such as realizations and rigidity, which offer a different way of understanding the geometric and combinatorial symmetry of polytopes. This is the first comprehensive account of the modern geometric theory, and includes a wide range of applications, along with new techniques. While the author explores the subject in depth, his elementary approach to traditional areas such as finite reflexion groups makes this book suitable for beginning graduate students as well as more experienced researchers | ||
650 | 4 | |a Polytopes | |
650 | 4 | |a Geometry | |
650 | 0 | 7 | |a Regelmäßiges Polytop |0 (DE-588)4177373-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Regelmäßiges Polytop |0 (DE-588)4177373-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-108-48958-4 |
830 | 0 | |a Encyclopedia of mathematics and its applications |v 172 |w (DE-604)BV044777929 |9 172 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108778992 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031814639 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/9781108778992 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108778992 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108778992 |l TUM01 |p ZDB-20-CBO |q TUM_Einzelkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108778992 |l TUM02 |p ZDB-20-CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108778992 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180933104893952 |
---|---|
any_adam_object | |
author | McMullen, Peter 1942- |
author_GND | (DE-588)1097306666 |
author_facet | McMullen, Peter 1942- |
author_role | aut |
author_sort | McMullen, Peter 1942- |
author_variant | p m pm |
building | Verbundindex |
bvnumber | BV046401896 |
classification_rvk | SK 380 |
classification_tum | MAT 525 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108778992 (OCoLC)1145170209 (DE-599)BVBBV046401896 |
discipline | Mathematik |
doi_str_mv | 10.1017/9781108778992 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03082nmm a2200505 cb4500</leader><controlfield tag="001">BV046401896</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211130 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200203s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108778992</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-77899-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108778992</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108778992</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1145170209</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046401896</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 525</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McMullen, Peter</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1097306666</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric regular polytopes</subfield><subfield code="c">Peter McMullen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 603 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">172</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Regular polytopes and their symmetry have a long history stretching back two and a half millennia, to the classical regular polygons and polyhedra. Much of modern research focuses on abstract regular polytopes, but significant recent developments have been made on the geometric side, including the exploration of new topics such as realizations and rigidity, which offer a different way of understanding the geometric and combinatorial symmetry of polytopes. This is the first comprehensive account of the modern geometric theory, and includes a wide range of applications, along with new techniques. While the author explores the subject in depth, his elementary approach to traditional areas such as finite reflexion groups makes this book suitable for beginning graduate students as well as more experienced researchers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polytopes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regelmäßiges Polytop</subfield><subfield code="0">(DE-588)4177373-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Regelmäßiges Polytop</subfield><subfield code="0">(DE-588)4177373-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-108-48958-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">172</subfield><subfield code="w">(DE-604)BV044777929</subfield><subfield code="9">172</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108778992</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031814639</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108778992</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108778992</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108778992</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108778992</subfield><subfield code="l">TUM02</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108778992</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046401896 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:43:38Z |
institution | BVB |
isbn | 9781108778992 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031814639 |
oclc_num | 1145170209 |
open_access_boolean | |
owner | DE-384 DE-12 DE-92 DE-91G DE-BY-TUM |
owner_facet | DE-384 DE-12 DE-92 DE-91G DE-BY-TUM |
physical | 1 Online-Ressource (xi, 603 Seiten) Illustrationen |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO TUM_Einzelkauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series | Encyclopedia of mathematics and its applications |
series2 | Encyclopedia of mathematics and its applications |
spelling | McMullen, Peter 1942- Verfasser (DE-588)1097306666 aut Geometric regular polytopes Peter McMullen Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore Cambridge University Press 2020 1 Online-Ressource (xi, 603 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications 172 Regular polytopes and their symmetry have a long history stretching back two and a half millennia, to the classical regular polygons and polyhedra. Much of modern research focuses on abstract regular polytopes, but significant recent developments have been made on the geometric side, including the exploration of new topics such as realizations and rigidity, which offer a different way of understanding the geometric and combinatorial symmetry of polytopes. This is the first comprehensive account of the modern geometric theory, and includes a wide range of applications, along with new techniques. While the author explores the subject in depth, his elementary approach to traditional areas such as finite reflexion groups makes this book suitable for beginning graduate students as well as more experienced researchers Polytopes Geometry Regelmäßiges Polytop (DE-588)4177373-1 gnd rswk-swf Regelmäßiges Polytop (DE-588)4177373-1 s 1\p DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 978-1-108-48958-4 Encyclopedia of mathematics and its applications 172 (DE-604)BV044777929 172 https://doi.org/10.1017/9781108778992 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | McMullen, Peter 1942- Geometric regular polytopes Encyclopedia of mathematics and its applications Polytopes Geometry Regelmäßiges Polytop (DE-588)4177373-1 gnd |
subject_GND | (DE-588)4177373-1 |
title | Geometric regular polytopes |
title_auth | Geometric regular polytopes |
title_exact_search | Geometric regular polytopes |
title_full | Geometric regular polytopes Peter McMullen |
title_fullStr | Geometric regular polytopes Peter McMullen |
title_full_unstemmed | Geometric regular polytopes Peter McMullen |
title_short | Geometric regular polytopes |
title_sort | geometric regular polytopes |
topic | Polytopes Geometry Regelmäßiges Polytop (DE-588)4177373-1 gnd |
topic_facet | Polytopes Geometry Regelmäßiges Polytop |
url | https://doi.org/10.1017/9781108778992 |
volume_link | (DE-604)BV044777929 |
work_keys_str_mv | AT mcmullenpeter geometricregularpolytopes |