The character theory of finite groups of Lie type: a guided tour
"Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinator...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York
Cambridge University Press
2020
|
Schriftenreihe: | Cambridge studies in advanced mathematics
187 |
Schlagworte: | |
Zusammenfassung: | "Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne-Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish-Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers"-- |
Beschreibung: | ix, 394 Seiten |
ISBN: | 9781108489621 1108489621 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV046362238 | ||
003 | DE-604 | ||
005 | 20210727 | ||
007 | t | ||
008 | 200130s2020 b||| 00||| eng d | ||
020 | |a 9781108489621 |9 978-1-108-48962-1 | ||
020 | |a 1108489621 |9 1108489621 | ||
035 | |a (OCoLC)1144921362 | ||
035 | |a (DE-599)BVBBV046362238 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-91G | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a MAT 225 |2 stub | ||
100 | 1 | |a Geck, Meinolf |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1018524649 |4 aut | |
245 | 1 | 0 | |a The character theory of finite groups of Lie type |b a guided tour |c Meinolf Geck, Universität at Stuttgart, Gunter Malle, Technische Universität at Kaiserslautern, Germany |
264 | 1 | |a Cambridge, United Kingdom ; New York |b Cambridge University Press |c 2020 | |
300 | |a ix, 394 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 187 | |
520 | 3 | |a "Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne-Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish-Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers"-- | |
650 | 0 | 7 | |a Endliche Lie-Gruppe |0 (DE-588)4448040-4 |2 gnd |9 rswk-swf |
653 | 0 | |a Finite groups | |
689 | 0 | 0 | |a Endliche Lie-Gruppe |0 (DE-588)4448040-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Malle, Gunter |d 1960- |e Sonstige |0 (DE-588)1016705093 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |a GECK, MEINOLF |t The character theory of finite groups of lie type |b 1 |d New York : Cambridge University Press, 2020 |n Online-Ausgabe |z 978-1-108-77908-1 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 187 |w (DE-604)BV000003678 |9 187 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-031738522 |
Datensatz im Suchindex
_version_ | 1804180876325552128 |
---|---|
any_adam_object | |
author | Geck, Meinolf ca. 20./21. Jh |
author_GND | (DE-588)1018524649 (DE-588)1016705093 |
author_facet | Geck, Meinolf ca. 20./21. Jh |
author_role | aut |
author_sort | Geck, Meinolf ca. 20./21. Jh |
author_variant | m g mg |
building | Verbundindex |
bvnumber | BV046362238 |
classification_rvk | SK 340 |
classification_tum | MAT 225 |
ctrlnum | (OCoLC)1144921362 (DE-599)BVBBV046362238 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02639nam a22003978cb4500</leader><controlfield tag="001">BV046362238</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210727 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200130s2020 b||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108489621</subfield><subfield code="9">978-1-108-48962-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108489621</subfield><subfield code="9">1108489621</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1144921362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046362238</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 225</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Geck, Meinolf</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1018524649</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The character theory of finite groups of Lie type</subfield><subfield code="b">a guided tour</subfield><subfield code="c">Meinolf Geck, Universität at Stuttgart, Gunter Malle, Technische Universität at Kaiserslautern, Germany</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ix, 394 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">187</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne-Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish-Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Lie-Gruppe</subfield><subfield code="0">(DE-588)4448040-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Finite groups</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Endliche Lie-Gruppe</subfield><subfield code="0">(DE-588)4448040-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malle, Gunter</subfield><subfield code="d">1960-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1016705093</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">GECK, MEINOLF</subfield><subfield code="t">The character theory of finite groups of lie type</subfield><subfield code="b">1</subfield><subfield code="d">New York : Cambridge University Press, 2020</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-108-77908-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">187</subfield><subfield code="w">(DE-604)BV000003678</subfield><subfield code="9">187</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031738522</subfield></datafield></record></collection> |
id | DE-604.BV046362238 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:42:43Z |
institution | BVB |
isbn | 9781108489621 1108489621 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031738522 |
oclc_num | 1144921362 |
open_access_boolean | |
owner | DE-20 DE-91G DE-BY-TUM |
owner_facet | DE-20 DE-91G DE-BY-TUM |
physical | ix, 394 Seiten |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Geck, Meinolf ca. 20./21. Jh. Verfasser (DE-588)1018524649 aut The character theory of finite groups of Lie type a guided tour Meinolf Geck, Universität at Stuttgart, Gunter Malle, Technische Universität at Kaiserslautern, Germany Cambridge, United Kingdom ; New York Cambridge University Press 2020 ix, 394 Seiten txt rdacontent n rdamedia nc rdacarrier Cambridge studies in advanced mathematics 187 "Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne-Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish-Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers"-- Endliche Lie-Gruppe (DE-588)4448040-4 gnd rswk-swf Finite groups Endliche Lie-Gruppe (DE-588)4448040-4 s DE-604 Malle, Gunter 1960- Sonstige (DE-588)1016705093 oth Erscheint auch als GECK, MEINOLF The character theory of finite groups of lie type 1 New York : Cambridge University Press, 2020 Online-Ausgabe 978-1-108-77908-1 Cambridge studies in advanced mathematics 187 (DE-604)BV000003678 187 |
spellingShingle | Geck, Meinolf ca. 20./21. Jh The character theory of finite groups of Lie type a guided tour Cambridge studies in advanced mathematics Endliche Lie-Gruppe (DE-588)4448040-4 gnd |
subject_GND | (DE-588)4448040-4 |
title | The character theory of finite groups of Lie type a guided tour |
title_auth | The character theory of finite groups of Lie type a guided tour |
title_exact_search | The character theory of finite groups of Lie type a guided tour |
title_full | The character theory of finite groups of Lie type a guided tour Meinolf Geck, Universität at Stuttgart, Gunter Malle, Technische Universität at Kaiserslautern, Germany |
title_fullStr | The character theory of finite groups of Lie type a guided tour Meinolf Geck, Universität at Stuttgart, Gunter Malle, Technische Universität at Kaiserslautern, Germany |
title_full_unstemmed | The character theory of finite groups of Lie type a guided tour Meinolf Geck, Universität at Stuttgart, Gunter Malle, Technische Universität at Kaiserslautern, Germany |
title_short | The character theory of finite groups of Lie type |
title_sort | the character theory of finite groups of lie type a guided tour |
title_sub | a guided tour |
topic | Endliche Lie-Gruppe (DE-588)4448040-4 gnd |
topic_facet | Endliche Lie-Gruppe |
volume_link | (DE-604)BV000003678 |
work_keys_str_mv | AT geckmeinolf thecharactertheoryoffinitegroupsoflietypeaguidedtour AT mallegunter thecharactertheoryoffinitegroupsoflietypeaguidedtour |