Hands-On algorithms for computer vision: learn how to use the best and most practical computer vision algorithms using OpenCV

The field of Computer Vision has seen advancements in terms of processing power and performance. Many algorithms are introduced to perform Computer Vision tasks efficiently. This book is a starting point for anyone interested in this field and wants to dig deeper into the most practical algorithms u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ahmadi Tazehkandi, Amin (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Birmingham ; Mumbai Packt Publishing 2018
Schlagworte:
Zusammenfassung:The field of Computer Vision has seen advancements in terms of processing power and performance. Many algorithms are introduced to perform Computer Vision tasks efficiently. This book is a starting point for anyone interested in this field and wants to dig deeper into the most practical algorithms used by professional Computer Vision developers
Cover -- Title Page -- Copyright and Credits -- Dedication -- Packt Upsell -- Contributors -- Preface -- Table of Contents -- Chapter 1: Introduction to Computer Vision -- Technical requirements -- Understanding computer vision -- Learning all about images -- Color spaces -- Input, process, and output -- Computer vision frameworks and libraries -- Summary -- Questions -- Chapter 2: Getting Started with OpenCV -- Technical requirements -- Introduction to OpenCV -- The Main modules in OpenCV -- Downloading and building/installing OpenCV -- Using OpenCV with C++ or Python -- Understanding the Mat class -- Constructing a Mat object -- Deleting a Mat object -- Accessing pixels -- Reading and writing images -- Reading and writing videos -- Accessing cameras -- Accessing RTSP and network feeds -- Mat-like classes -- Summary -- Questions -- Further reading -- Chapter 3: Array and Matrix Operations -- Technical requirements -- Operations contained in the Mat class -- Cloning a matrix -- Calculating the cross-product -- Extracting a diagonal -- Calculating the dot product -- Learning about the identity matrix -- Matrix inversion -- Element-wise matrix multiplication -- The ones and zeroes matrix -- Transposing a matrix -- Reshaping a Mat object -- Element-wise matrix operations -- Basic operations -- The addition operation -- Weighted addition -- The subtraction operation -- The multiplication and division operations -- Bitwise logical operations -- The comparison operations -- The mathematical operations -- Matrix and array-wise operations -- Making borders for extrapolation -- Flipping (mirroring) and rotating images -- Working with channels -- Mathematical functions -- Matrix inversion -- Mean and sum of elements -- Discrete Fourier transformation -- Generating random numbers -- The search and locate functions -- Locating non-zero elements
Locating minimum and maximum elements -- Lookup table transformation -- Summary -- Questions -- Chapter 4: Drawing, Filtering, and Transformation -- Technical requirements -- Drawing on images -- Printing text on images -- Drawing shapes -- Filtering images -- Blurring/smoothening filters -- Morphological filters -- Derivative-based filters -- Arbitrary filtering -- Transforming images -- Thresholding algorithms -- Color space and type conversion -- Geometric transformation -- Applying colormaps -- Summary -- Questions -- Chapter 5: Back-Projection and Histograms -- Technical requirements -- Understanding histograms -- Displaying histograms -- Back-projection of histograms -- Learning more about back-projections -- Comparing histograms -- Equalizing histograms -- Summary -- Questions -- Further reading -- Chapter 6: Video Analysis - Motion Detection and Tracking -- Technical requirements -- Processing videos -- Understanding the Mean Shift algorithm -- Using the Continuously Adaptive Mean (CAM) Shift -- Using the Kalman filter for tracking and noise reduction -- How to extract the background/foreground -- An example of background segmentation -- Summary -- Questions -- Chapter 7: Object Detection - Features and Descriptors -- Technical requirements -- Template matching for object detection -- Detecting corners and edges -- Learning the Harris corner-detection algorithm -- Edge-detection algorithms -- Contour calculation and analysis -- Detecting, descripting, and matching features -- Summary -- Questions -- Chapter 8: Machine Learning in Computer Vision -- Technical requirements -- Support vector machines -- Classifying images using SVM and HOG -- Training models with artificial neural networks -- The cascading classification algorithm -- Object detection using cascade classifiers -- Training cascade classifiers -- Creating samples
Beschreibung:iv, 278 Seiten Illustrationen
ISBN:9781789130942

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!