Introduction to machine learning:
A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks. The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such ex...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, Massachusetts ; London, England
The MIT Press
[2020]
|
Ausgabe: | Fourth edition |
Schriftenreihe: | Adaptive computation and machine learning
|
Schlagworte: | |
Zusammenfassung: | A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks. The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks. The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals. |
Beschreibung: | xxiv, 682 Seiten Diagramme |
ISBN: | 9780262043793 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV046351128 | ||
003 | DE-604 | ||
005 | 20230510 | ||
007 | t| | ||
008 | 200123s2020 xxu|||| |||| 00||| eng d | ||
020 | |a 9780262043793 |9 978-0-262-04379-3 | ||
035 | |a (OCoLC)1153996504 | ||
035 | |a (DE-599)BVBBV046351128 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-11 |a DE-473 |a DE-29T |a DE-91G |a DE-83 |a DE-523 |a DE-355 |a DE-1043 |a DE-703 |a DE-739 |a DE-188 |a DE-19 | ||
050 | 0 | |a Q325.5 | |
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
084 | |a ST 304 |0 (DE-625)143653: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a DAT 708 |2 stub | ||
100 | 1 | |a Alpaydın, Ethem |d 1966- |e Verfasser |0 (DE-588)134261046 |4 aut | |
245 | 1 | 0 | |a Introduction to machine learning |c Ethem Alpaydın |
250 | |a Fourth edition | ||
264 | 1 | |a Cambridge, Massachusetts ; London, England |b The MIT Press |c [2020] | |
300 | |a xxiv, 682 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Adaptive computation and machine learning | |
520 | 3 | |a A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks. The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks. The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals. | |
650 | 4 | |a Machine learning | |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | 1 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 1 | |5 DE-604 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031727614 |
Datensatz im Suchindex
_version_ | 1816057818481950720 |
---|---|
adam_text | |
any_adam_object | |
author | Alpaydın, Ethem 1966- |
author_GND | (DE-588)134261046 |
author_facet | Alpaydın, Ethem 1966- |
author_role | aut |
author_sort | Alpaydın, Ethem 1966- |
author_variant | e a ea |
building | Verbundindex |
bvnumber | BV046351128 |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 |
callnumber-search | Q325.5 |
callnumber-sort | Q 3325.5 |
callnumber-subject | Q - General Science |
classification_rvk | ST 302 ST 304 ST 300 |
classification_tum | DAT 708 |
ctrlnum | (OCoLC)1153996504 (DE-599)BVBBV046351128 |
discipline | Informatik |
edition | Fourth edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV046351128</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230510</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">200123s2020 xxu|||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262043793</subfield><subfield code="9">978-0-262-04379-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1153996504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046351128</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q325.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 304</subfield><subfield code="0">(DE-625)143653:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alpaydın, Ethem</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)134261046</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to machine learning</subfield><subfield code="c">Ethem Alpaydın</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Fourth edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Massachusetts ; London, England</subfield><subfield code="b">The MIT Press</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiv, 682 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Adaptive computation and machine learning</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks. The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks. The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031727614</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV046351128 |
illustrated | Not Illustrated |
indexdate | 2024-11-18T11:01:38Z |
institution | BVB |
isbn | 9780262043793 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031727614 |
oclc_num | 1153996504 |
open_access_boolean | |
owner | DE-11 DE-473 DE-BY-UBG DE-29T DE-91G DE-BY-TUM DE-83 DE-523 DE-355 DE-BY-UBR DE-1043 DE-703 DE-739 DE-188 DE-19 DE-BY-UBM |
owner_facet | DE-11 DE-473 DE-BY-UBG DE-29T DE-91G DE-BY-TUM DE-83 DE-523 DE-355 DE-BY-UBR DE-1043 DE-703 DE-739 DE-188 DE-19 DE-BY-UBM |
physical | xxiv, 682 Seiten Diagramme |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | The MIT Press |
record_format | marc |
series2 | Adaptive computation and machine learning |
spelling | Alpaydın, Ethem 1966- Verfasser (DE-588)134261046 aut Introduction to machine learning Ethem Alpaydın Fourth edition Cambridge, Massachusetts ; London, England The MIT Press [2020] xxiv, 682 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Adaptive computation and machine learning A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks. The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks. The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals. Machine learning Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Maschinelles Lernen (DE-588)4193754-5 s DE-604 Wahrscheinlichkeitstheorie (DE-588)4079013-7 s |
spellingShingle | Alpaydın, Ethem 1966- Introduction to machine learning Machine learning Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4079013-7 (DE-588)4193754-5 (DE-588)4123623-3 |
title | Introduction to machine learning |
title_auth | Introduction to machine learning |
title_exact_search | Introduction to machine learning |
title_full | Introduction to machine learning Ethem Alpaydın |
title_fullStr | Introduction to machine learning Ethem Alpaydın |
title_full_unstemmed | Introduction to machine learning Ethem Alpaydın |
title_short | Introduction to machine learning |
title_sort | introduction to machine learning |
topic | Machine learning Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Machine learning Wahrscheinlichkeitstheorie Maschinelles Lernen Lehrbuch |
work_keys_str_mv | AT alpaydınethem introductiontomachinelearning |