Theory of simple glasses: exact solutions in infinite dimensions
This pedagogical and self-contained text describes the modern mean field theory of simple structural glasses. The book begins with a thorough explanation of infinite-dimensional models in statistical physics, before reviewing the key elements of the thermodynamic theory of liquids and the dynamical...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2020
|
Schlagworte: | |
Zusammenfassung: | This pedagogical and self-contained text describes the modern mean field theory of simple structural glasses. The book begins with a thorough explanation of infinite-dimensional models in statistical physics, before reviewing the key elements of the thermodynamic theory of liquids and the dynamical properties of liquids and glasses. The central feature of the mean field theory of disordered systems, the existence of a large multiplicity of metastable states, is then introduced. The replica method is then covered, before the final chapters describe important, advanced topics such as Gardner transitions, complexity, packing spheres in large dimensions, the jamming transition, and the rheology of glass. Presenting the theory in a clear and pedagogical style, this is an excellent resource for researchers and graduate students working in condensed matter physics and statistical mechanics |
Beschreibung: | Preface; 1. Infinite-dimensional models in statistical physics; 2. Atomic liquids in infinite dimensions: thermodynamics; 3. Atomic liquids in infinite dimensions: equilibrium dynamics; 4. Thermodynamics of glass states; 5. Replica symmetry breaking and hierarchical free energy landscapes; 6. The Gardner transition; 7. Counting glass states: the complexity; 8. Packing spheres in large dimensions; 9. The jamming transition; 10. Rheology of the glass; References; Index |
Beschreibung: | xvi, 323 Seiten Diagramme |
ISBN: | 9781107191075 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046349615 | ||
003 | DE-604 | ||
005 | 20231025 | ||
007 | t | ||
008 | 200122s2020 |||| |||| 00||| eng d | ||
020 | |a 9781107191075 |c print |9 978-1-107-19107-5 | ||
024 | 3 | |a 9781107191075 | |
035 | |a (OCoLC)1141114328 | ||
035 | |a (DE-599)BVBBV046349615 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-83 | ||
084 | |a 82D30 |2 msc/2020 | ||
084 | |a 82B44 |2 msc/2020 | ||
084 | |a 82-01 |2 msc/2020 | ||
100 | 1 | |a Parisi, Giorgio |d 1948- |0 (DE-588)138622760 |4 aut | |
245 | 1 | 0 | |a Theory of simple glasses |b exact solutions in infinite dimensions |c Giorgio Parisi ; Sapienza University of Rome ; Pierfrancesco Urbani ; Institut de physique théorique, Université Paris Saclay, CNRS, CEA ; Francesco Zamponi ; Ecole Normale Supérieure |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2020 | |
300 | |a xvi, 323 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Preface; 1. Infinite-dimensional models in statistical physics; 2. Atomic liquids in infinite dimensions: thermodynamics; 3. Atomic liquids in infinite dimensions: equilibrium dynamics; 4. Thermodynamics of glass states; 5. Replica symmetry breaking and hierarchical free energy landscapes; 6. The Gardner transition; 7. Counting glass states: the complexity; 8. Packing spheres in large dimensions; 9. The jamming transition; 10. Rheology of the glass; References; Index | ||
520 | |a This pedagogical and self-contained text describes the modern mean field theory of simple structural glasses. The book begins with a thorough explanation of infinite-dimensional models in statistical physics, before reviewing the key elements of the thermodynamic theory of liquids and the dynamical properties of liquids and glasses. The central feature of the mean field theory of disordered systems, the existence of a large multiplicity of metastable states, is then introduced. The replica method is then covered, before the final chapters describe important, advanced topics such as Gardner transitions, complexity, packing spheres in large dimensions, the jamming transition, and the rheology of glass. Presenting the theory in a clear and pedagogical style, this is an excellent resource for researchers and graduate students working in condensed matter physics and statistical mechanics | ||
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 0 | 7 | |a Mean-Field-Theorie |0 (DE-588)4337622-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ungeordnetes System |0 (DE-588)4124353-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Glaszustand |0 (DE-588)4157463-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Physik |0 (DE-588)4057000-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Glaszustand |0 (DE-588)4157463-1 |D s |
689 | 0 | 1 | |a Statistische Physik |0 (DE-588)4057000-9 |D s |
689 | 0 | 2 | |a Mean-Field-Theorie |0 (DE-588)4337622-8 |D s |
689 | 0 | 3 | |a Ungeordnetes System |0 (DE-588)4124353-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Urbani, Pierfrancesco |d 1986- |0 (DE-588)1203740999 |4 aut | |
700 | 1 | |a Zamponi, Francesco |d 1979- |0 (DE-588)1203741332 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-108-12049-4 |
999 | |a oai:aleph.bib-bvb.de:BVB01-031726135 |
Datensatz im Suchindex
_version_ | 1804180854985981952 |
---|---|
any_adam_object | |
author | Parisi, Giorgio 1948- Urbani, Pierfrancesco 1986- Zamponi, Francesco 1979- |
author_GND | (DE-588)138622760 (DE-588)1203740999 (DE-588)1203741332 |
author_facet | Parisi, Giorgio 1948- Urbani, Pierfrancesco 1986- Zamponi, Francesco 1979- |
author_role | aut aut aut |
author_sort | Parisi, Giorgio 1948- |
author_variant | g p gp p u pu f z fz |
building | Verbundindex |
bvnumber | BV046349615 |
ctrlnum | (OCoLC)1141114328 (DE-599)BVBBV046349615 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03252nam a2200493 c 4500</leader><controlfield tag="001">BV046349615</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231025 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200122s2020 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107191075</subfield><subfield code="c">print</subfield><subfield code="9">978-1-107-19107-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781107191075</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1141114328</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046349615</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">82D30</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">82B44</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">82-01</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Parisi, Giorgio</subfield><subfield code="d">1948-</subfield><subfield code="0">(DE-588)138622760</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of simple glasses</subfield><subfield code="b">exact solutions in infinite dimensions</subfield><subfield code="c">Giorgio Parisi ; Sapienza University of Rome ; Pierfrancesco Urbani ; Institut de physique théorique, Université Paris Saclay, CNRS, CEA ; Francesco Zamponi ; Ecole Normale Supérieure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 323 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface; 1. Infinite-dimensional models in statistical physics; 2. Atomic liquids in infinite dimensions: thermodynamics; 3. Atomic liquids in infinite dimensions: equilibrium dynamics; 4. Thermodynamics of glass states; 5. Replica symmetry breaking and hierarchical free energy landscapes; 6. The Gardner transition; 7. Counting glass states: the complexity; 8. Packing spheres in large dimensions; 9. The jamming transition; 10. Rheology of the glass; References; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This pedagogical and self-contained text describes the modern mean field theory of simple structural glasses. The book begins with a thorough explanation of infinite-dimensional models in statistical physics, before reviewing the key elements of the thermodynamic theory of liquids and the dynamical properties of liquids and glasses. The central feature of the mean field theory of disordered systems, the existence of a large multiplicity of metastable states, is then introduced. The replica method is then covered, before the final chapters describe important, advanced topics such as Gardner transitions, complexity, packing spheres in large dimensions, the jamming transition, and the rheology of glass. Presenting the theory in a clear and pedagogical style, this is an excellent resource for researchers and graduate students working in condensed matter physics and statistical mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mean-Field-Theorie</subfield><subfield code="0">(DE-588)4337622-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ungeordnetes System</subfield><subfield code="0">(DE-588)4124353-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glaszustand</subfield><subfield code="0">(DE-588)4157463-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Glaszustand</subfield><subfield code="0">(DE-588)4157463-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mean-Field-Theorie</subfield><subfield code="0">(DE-588)4337622-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Ungeordnetes System</subfield><subfield code="0">(DE-588)4124353-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Urbani, Pierfrancesco</subfield><subfield code="d">1986-</subfield><subfield code="0">(DE-588)1203740999</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zamponi, Francesco</subfield><subfield code="d">1979-</subfield><subfield code="0">(DE-588)1203741332</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-108-12049-4</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031726135</subfield></datafield></record></collection> |
id | DE-604.BV046349615 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:42:23Z |
institution | BVB |
isbn | 9781107191075 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031726135 |
oclc_num | 1141114328 |
open_access_boolean | |
owner | DE-29T DE-83 |
owner_facet | DE-29T DE-83 |
physical | xvi, 323 Seiten Diagramme |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Parisi, Giorgio 1948- (DE-588)138622760 aut Theory of simple glasses exact solutions in infinite dimensions Giorgio Parisi ; Sapienza University of Rome ; Pierfrancesco Urbani ; Institut de physique théorique, Université Paris Saclay, CNRS, CEA ; Francesco Zamponi ; Ecole Normale Supérieure Cambridge Cambridge University Press 2020 xvi, 323 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Preface; 1. Infinite-dimensional models in statistical physics; 2. Atomic liquids in infinite dimensions: thermodynamics; 3. Atomic liquids in infinite dimensions: equilibrium dynamics; 4. Thermodynamics of glass states; 5. Replica symmetry breaking and hierarchical free energy landscapes; 6. The Gardner transition; 7. Counting glass states: the complexity; 8. Packing spheres in large dimensions; 9. The jamming transition; 10. Rheology of the glass; References; Index This pedagogical and self-contained text describes the modern mean field theory of simple structural glasses. The book begins with a thorough explanation of infinite-dimensional models in statistical physics, before reviewing the key elements of the thermodynamic theory of liquids and the dynamical properties of liquids and glasses. The central feature of the mean field theory of disordered systems, the existence of a large multiplicity of metastable states, is then introduced. The replica method is then covered, before the final chapters describe important, advanced topics such as Gardner transitions, complexity, packing spheres in large dimensions, the jamming transition, and the rheology of glass. Presenting the theory in a clear and pedagogical style, this is an excellent resource for researchers and graduate students working in condensed matter physics and statistical mechanics bicssc Mean-Field-Theorie (DE-588)4337622-8 gnd rswk-swf Ungeordnetes System (DE-588)4124353-5 gnd rswk-swf Glaszustand (DE-588)4157463-1 gnd rswk-swf Statistische Physik (DE-588)4057000-9 gnd rswk-swf Glaszustand (DE-588)4157463-1 s Statistische Physik (DE-588)4057000-9 s Mean-Field-Theorie (DE-588)4337622-8 s Ungeordnetes System (DE-588)4124353-5 s DE-604 Urbani, Pierfrancesco 1986- (DE-588)1203740999 aut Zamponi, Francesco 1979- (DE-588)1203741332 aut Erscheint auch als Online-Ausgabe 978-1-108-12049-4 |
spellingShingle | Parisi, Giorgio 1948- Urbani, Pierfrancesco 1986- Zamponi, Francesco 1979- Theory of simple glasses exact solutions in infinite dimensions bicssc Mean-Field-Theorie (DE-588)4337622-8 gnd Ungeordnetes System (DE-588)4124353-5 gnd Glaszustand (DE-588)4157463-1 gnd Statistische Physik (DE-588)4057000-9 gnd |
subject_GND | (DE-588)4337622-8 (DE-588)4124353-5 (DE-588)4157463-1 (DE-588)4057000-9 |
title | Theory of simple glasses exact solutions in infinite dimensions |
title_auth | Theory of simple glasses exact solutions in infinite dimensions |
title_exact_search | Theory of simple glasses exact solutions in infinite dimensions |
title_full | Theory of simple glasses exact solutions in infinite dimensions Giorgio Parisi ; Sapienza University of Rome ; Pierfrancesco Urbani ; Institut de physique théorique, Université Paris Saclay, CNRS, CEA ; Francesco Zamponi ; Ecole Normale Supérieure |
title_fullStr | Theory of simple glasses exact solutions in infinite dimensions Giorgio Parisi ; Sapienza University of Rome ; Pierfrancesco Urbani ; Institut de physique théorique, Université Paris Saclay, CNRS, CEA ; Francesco Zamponi ; Ecole Normale Supérieure |
title_full_unstemmed | Theory of simple glasses exact solutions in infinite dimensions Giorgio Parisi ; Sapienza University of Rome ; Pierfrancesco Urbani ; Institut de physique théorique, Université Paris Saclay, CNRS, CEA ; Francesco Zamponi ; Ecole Normale Supérieure |
title_short | Theory of simple glasses |
title_sort | theory of simple glasses exact solutions in infinite dimensions |
title_sub | exact solutions in infinite dimensions |
topic | bicssc Mean-Field-Theorie (DE-588)4337622-8 gnd Ungeordnetes System (DE-588)4124353-5 gnd Glaszustand (DE-588)4157463-1 gnd Statistische Physik (DE-588)4057000-9 gnd |
topic_facet | bicssc Mean-Field-Theorie Ungeordnetes System Glaszustand Statistische Physik |
work_keys_str_mv | AT parisigiorgio theoryofsimpleglassesexactsolutionsininfinitedimensions AT urbanipierfrancesco theoryofsimpleglassesexactsolutionsininfinitedimensions AT zamponifrancesco theoryofsimpleglassesexactsolutionsininfinitedimensions |