Singularities of Solutions to Chemotaxis Systems:
The Keller-Segel model for chemotaxis is a prototype of nonlocal systems describing concentration phenomena in physics and biology. While the two-dimensional theory is by now quite complete, the questions of global-in-time solvability and blowup characterization are largely open in higher dimensions...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2019]
|
Schriftenreihe: | De Gruyter Series in Mathematics and Life Sciences
6 |
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-898 DE-859 DE-860 DE-91 DE-20 DE-706 DE-739 Volltext |
Zusammenfassung: | The Keller-Segel model for chemotaxis is a prototype of nonlocal systems describing concentration phenomena in physics and biology. While the two-dimensional theory is by now quite complete, the questions of global-in-time solvability and blowup characterization are largely open in higher dimensions. In this book, global-in-time solutions are constructed under (nearly) optimal assumptions on initial data and rigorous blowup criteria are derived |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 21. Dez 2019) |
Beschreibung: | 1 online resource (XXIV, 207 pages) |
ISBN: | 9783110599534 |
DOI: | 10.1515/9783110599534 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV046341817 | ||
003 | DE-604 | ||
005 | 20240917 | ||
007 | cr|uuu---uuuuu | ||
008 | 200120s2019 xx o|||| 00||| eng d | ||
020 | |a 9783110599534 |9 978-3-11-059953-4 | ||
024 | 7 | |a 10.1515/9783110599534 |2 doi | |
035 | |a (ZDB-23-DGG)9783110599534 | ||
035 | |a (OCoLC)1137811753 | ||
035 | |a (DE-599)BVBBV046341817 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-859 |a DE-860 |a DE-739 |a DE-1043 |a DE-91 |a DE-20 |a DE-858 |a DE-706 |a DE-898 | ||
084 | |a WN 6650 |0 (DE-625)151063: |2 rvk | ||
100 | 1 | |a Biler, Piotr |d 1958- |e Verfasser |0 (DE-588)1202516769 |4 aut | |
245 | 1 | 0 | |a Singularities of Solutions to Chemotaxis Systems |c Piotr Biler |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2019] | |
264 | 4 | |c © 2020 | |
300 | |a 1 online resource (XXIV, 207 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter Series in Mathematics and Life Sciences |v 6 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 21. Dez 2019) | ||
520 | |a The Keller-Segel model for chemotaxis is a prototype of nonlocal systems describing concentration phenomena in physics and biology. While the two-dimensional theory is by now quite complete, the questions of global-in-time solvability and blowup characterization are largely open in higher dimensions. In this book, global-in-time solutions are constructed under (nearly) optimal assumptions on initial data and rigorous blowup criteria are derived | ||
546 | |a In English | ||
650 | 4 | |a Blow up ‹Differentialgleichung› | |
650 | 4 | |a Chemotaxi | |
650 | 4 | |a Globale Lösung | |
650 | 4 | |a Parabolische partielle Differentialgleichung | |
650 | 4 | |a Singularität ‹Mathematik› | |
650 | 7 | |a MATHEMATICS / Differential Equations / Partial |2 bisacsh | |
650 | 0 | 7 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares parabolisches System |0 (DE-588)4352366-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Blowing up |0 (DE-588)4508027-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Globale Lösung |0 (DE-588)4264389-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chemotaxis |0 (DE-588)4127969-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineares parabolisches System |0 (DE-588)4352366-3 |D s |
689 | 0 | 1 | |a Globale Lösung |0 (DE-588)4264389-2 |D s |
689 | 0 | 2 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |D s |
689 | 0 | 3 | |a Blowing up |0 (DE-588)4508027-6 |D s |
689 | 0 | 4 | |a Chemotaxis |0 (DE-588)4127969-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783110597899 |
830 | 0 | |a De Gruyter Series in Mathematics and Life Sciences |v 6 |w (DE-604)BV046786575 |9 6 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110599534 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-DMA | ||
940 | 1 | |q ZDB-23-DMA19 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031718454 | |
966 | e | |u https://doi.org/10.1515/9783110599534 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110599534 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110599534 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110599534?locatt=mode:legacy |l DE-898 |p ZDB-23-DMA |q ZDB-23-DMA19 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110599534 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110599534 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110599534 |l DE-91 |p ZDB-23-DMA |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110599534 |l DE-20 |p ZDB-23-DMA |q ZDB-23-DMA19 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110599534 |l DE-706 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110599534 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1824507620470292480 |
---|---|
adam_text | |
any_adam_object | |
author | Biler, Piotr 1958- |
author_GND | (DE-588)1202516769 |
author_facet | Biler, Piotr 1958- |
author_role | aut |
author_sort | Biler, Piotr 1958- |
author_variant | p b pb |
building | Verbundindex |
bvnumber | BV046341817 |
classification_rvk | WN 6650 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9783110599534 (OCoLC)1137811753 (DE-599)BVBBV046341817 |
discipline | Biologie |
doi_str_mv | 10.1515/9783110599534 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV046341817</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240917</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200120s2019 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110599534</subfield><subfield code="9">978-3-11-059953-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110599534</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110599534</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1137811753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046341817</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WN 6650</subfield><subfield code="0">(DE-625)151063:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biler, Piotr</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1202516769</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Singularities of Solutions to Chemotaxis Systems</subfield><subfield code="c">Piotr Biler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (XXIV, 207 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Series in Mathematics and Life Sciences</subfield><subfield code="v">6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 21. Dez 2019)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Keller-Segel model for chemotaxis is a prototype of nonlocal systems describing concentration phenomena in physics and biology. While the two-dimensional theory is by now quite complete, the questions of global-in-time solvability and blowup characterization are largely open in higher dimensions. In this book, global-in-time solutions are constructed under (nearly) optimal assumptions on initial data and rigorous blowup criteria are derived</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blow up ‹Differentialgleichung›</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemotaxi</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Globale Lösung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parabolische partielle Differentialgleichung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singularität ‹Mathematik›</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Differential Equations / Partial</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares parabolisches System</subfield><subfield code="0">(DE-588)4352366-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Blowing up</subfield><subfield code="0">(DE-588)4508027-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Lösung</subfield><subfield code="0">(DE-588)4264389-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemotaxis</subfield><subfield code="0">(DE-588)4127969-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineares parabolisches System</subfield><subfield code="0">(DE-588)4352366-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Globale Lösung</subfield><subfield code="0">(DE-588)4264389-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Blowing up</subfield><subfield code="0">(DE-588)4508027-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Chemotaxis</subfield><subfield code="0">(DE-588)4127969-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783110597899</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter Series in Mathematics and Life Sciences</subfield><subfield code="v">6</subfield><subfield code="w">(DE-604)BV046786575</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110599534</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA19</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031718454</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110599534</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110599534</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110599534</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110599534?locatt=mode:legacy</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110599534</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110599534</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110599534</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110599534</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110599534</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110599534</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046341817 |
illustrated | Not Illustrated |
indexdate | 2025-02-19T17:27:37Z |
institution | BVB |
isbn | 9783110599534 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031718454 |
oclc_num | 1137811753 |
open_access_boolean | |
owner | DE-1046 DE-859 DE-860 DE-739 DE-1043 DE-91 DE-BY-TUM DE-20 DE-858 DE-706 DE-898 DE-BY-UBR |
owner_facet | DE-1046 DE-859 DE-860 DE-739 DE-1043 DE-91 DE-BY-TUM DE-20 DE-858 DE-706 DE-898 DE-BY-UBR |
physical | 1 online resource (XXIV, 207 pages) |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DMA19 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DMA ZDB-23-DMA19 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter Series in Mathematics and Life Sciences |
series2 | De Gruyter Series in Mathematics and Life Sciences |
spelling | Biler, Piotr 1958- Verfasser (DE-588)1202516769 aut Singularities of Solutions to Chemotaxis Systems Piotr Biler Berlin ; Boston De Gruyter [2019] © 2020 1 online resource (XXIV, 207 pages) txt rdacontent c rdamedia cr rdacarrier De Gruyter Series in Mathematics and Life Sciences 6 Description based on online resource; title from PDF title page (publisher's Web site, viewed 21. Dez 2019) The Keller-Segel model for chemotaxis is a prototype of nonlocal systems describing concentration phenomena in physics and biology. While the two-dimensional theory is by now quite complete, the questions of global-in-time solvability and blowup characterization are largely open in higher dimensions. In this book, global-in-time solutions are constructed under (nearly) optimal assumptions on initial data and rigorous blowup criteria are derived In English Blow up ‹Differentialgleichung› Chemotaxi Globale Lösung Parabolische partielle Differentialgleichung Singularität ‹Mathematik› MATHEMATICS / Differential Equations / Partial bisacsh Singularität Mathematik (DE-588)4077459-4 gnd rswk-swf Nichtlineares parabolisches System (DE-588)4352366-3 gnd rswk-swf Blowing up (DE-588)4508027-6 gnd rswk-swf Globale Lösung (DE-588)4264389-2 gnd rswk-swf Chemotaxis (DE-588)4127969-4 gnd rswk-swf Nichtlineares parabolisches System (DE-588)4352366-3 s Globale Lösung (DE-588)4264389-2 s Singularität Mathematik (DE-588)4077459-4 s Blowing up (DE-588)4508027-6 s Chemotaxis (DE-588)4127969-4 s DE-604 Erscheint auch als Druck-Ausgabe 9783110597899 De Gruyter Series in Mathematics and Life Sciences 6 (DE-604)BV046786575 6 https://doi.org/10.1515/9783110599534 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Biler, Piotr 1958- Singularities of Solutions to Chemotaxis Systems De Gruyter Series in Mathematics and Life Sciences Blow up ‹Differentialgleichung› Chemotaxi Globale Lösung Parabolische partielle Differentialgleichung Singularität ‹Mathematik› MATHEMATICS / Differential Equations / Partial bisacsh Singularität Mathematik (DE-588)4077459-4 gnd Nichtlineares parabolisches System (DE-588)4352366-3 gnd Blowing up (DE-588)4508027-6 gnd Globale Lösung (DE-588)4264389-2 gnd Chemotaxis (DE-588)4127969-4 gnd |
subject_GND | (DE-588)4077459-4 (DE-588)4352366-3 (DE-588)4508027-6 (DE-588)4264389-2 (DE-588)4127969-4 |
title | Singularities of Solutions to Chemotaxis Systems |
title_auth | Singularities of Solutions to Chemotaxis Systems |
title_exact_search | Singularities of Solutions to Chemotaxis Systems |
title_full | Singularities of Solutions to Chemotaxis Systems Piotr Biler |
title_fullStr | Singularities of Solutions to Chemotaxis Systems Piotr Biler |
title_full_unstemmed | Singularities of Solutions to Chemotaxis Systems Piotr Biler |
title_short | Singularities of Solutions to Chemotaxis Systems |
title_sort | singularities of solutions to chemotaxis systems |
topic | Blow up ‹Differentialgleichung› Chemotaxi Globale Lösung Parabolische partielle Differentialgleichung Singularität ‹Mathematik› MATHEMATICS / Differential Equations / Partial bisacsh Singularität Mathematik (DE-588)4077459-4 gnd Nichtlineares parabolisches System (DE-588)4352366-3 gnd Blowing up (DE-588)4508027-6 gnd Globale Lösung (DE-588)4264389-2 gnd Chemotaxis (DE-588)4127969-4 gnd |
topic_facet | Blow up ‹Differentialgleichung› Chemotaxi Globale Lösung Parabolische partielle Differentialgleichung Singularität ‹Mathematik› MATHEMATICS / Differential Equations / Partial Singularität Mathematik Nichtlineares parabolisches System Blowing up Chemotaxis |
url | https://doi.org/10.1515/9783110599534 |
volume_link | (DE-604)BV046786575 |
work_keys_str_mv | AT bilerpiotr singularitiesofsolutionstochemotaxissystems |