Convex geometry of numbers: covering, successive minima and Banach-Mazur distance:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
2019
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 Online-Ressource (vii, 50 Blätter) Diagramme |
DOI: | 10.14279/depositonce-9059 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV046334781 | ||
003 | DE-604 | ||
005 | 20200313 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 200115s2019 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.14279/depositonce-9059 |2 doi | |
035 | |a (OCoLC)1137061875 | ||
035 | |a (DE-599)BVBBV046334781 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
100 | 1 | |a Xue, Fei |e Verfasser |0 (DE-588)1202856047 |4 aut | |
245 | 1 | 0 | |a Convex geometry of numbers: covering, successive minima and Banach-Mazur distance |c vorgelegt von Master of Science (M.Sc.) Fei Xue |
264 | 1 | |a Berlin |c 2019 | |
300 | |a 1 Online-Ressource (vii, 50 Blätter) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |b Dissertation |c Technische Universität Berlin |d 2019 | ||
650 | 0 | 7 | |a Überdeckung |g Mathematik |0 (DE-588)4186551-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Geometrie |0 (DE-588)4407260-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexer Körper |0 (DE-588)4165214-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abstand |0 (DE-588)4228463-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gitterpunkt |0 (DE-588)4157384-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie der Zahlen |0 (DE-588)4227477-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Konvexe Geometrie |0 (DE-588)4407260-0 |D s |
689 | 0 | 1 | |a Geometrie der Zahlen |0 (DE-588)4227477-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Gitterpunkt |0 (DE-588)4157384-5 |D s |
689 | 1 | 1 | |a Überdeckung |g Mathematik |0 (DE-588)4186551-0 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Konvexer Körper |0 (DE-588)4165214-9 |D s |
689 | 2 | 1 | |a Abstand |0 (DE-588)4228463-6 |D s |
689 | 2 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |w (DE-604)BV046334758 |
856 | 4 | 0 | |u https://doi.org/10.14279/depositonce-9059 |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031711544 |
Datensatz im Suchindex
_version_ | 1804180828218982400 |
---|---|
any_adam_object | |
author | Xue, Fei |
author_GND | (DE-588)1202856047 |
author_facet | Xue, Fei |
author_role | aut |
author_sort | Xue, Fei |
author_variant | f x fx |
building | Verbundindex |
bvnumber | BV046334781 |
collection | ebook |
ctrlnum | (OCoLC)1137061875 (DE-599)BVBBV046334781 |
doi_str_mv | 10.14279/depositonce-9059 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01972nmm a2200505 c 4500</leader><controlfield tag="001">BV046334781</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200313 </controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200115s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.14279/depositonce-9059</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1137061875</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046334781</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xue, Fei</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1202856047</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convex geometry of numbers: covering, successive minima and Banach-Mazur distance</subfield><subfield code="c">vorgelegt von Master of Science (M.Sc.) Fei Xue</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 50 Blätter)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Technische Universität Berlin</subfield><subfield code="d">2019</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Überdeckung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4186551-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Geometrie</subfield><subfield code="0">(DE-588)4407260-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexer Körper</subfield><subfield code="0">(DE-588)4165214-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abstand</subfield><subfield code="0">(DE-588)4228463-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gitterpunkt</subfield><subfield code="0">(DE-588)4157384-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie der Zahlen</subfield><subfield code="0">(DE-588)4227477-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexe Geometrie</subfield><subfield code="0">(DE-588)4407260-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrie der Zahlen</subfield><subfield code="0">(DE-588)4227477-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gitterpunkt</subfield><subfield code="0">(DE-588)4157384-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Überdeckung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4186551-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Konvexer Körper</subfield><subfield code="0">(DE-588)4165214-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Abstand</subfield><subfield code="0">(DE-588)4228463-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="w">(DE-604)BV046334758</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.14279/depositonce-9059</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031711544</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV046334781 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:41:58Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031711544 |
oclc_num | 1137061875 |
open_access_boolean | 1 |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource (vii, 50 Blätter) Diagramme |
psigel | ebook |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
record_format | marc |
spelling | Xue, Fei Verfasser (DE-588)1202856047 aut Convex geometry of numbers: covering, successive minima and Banach-Mazur distance vorgelegt von Master of Science (M.Sc.) Fei Xue Berlin 2019 1 Online-Ressource (vii, 50 Blätter) Diagramme txt rdacontent c rdamedia cr rdacarrier Dissertation Technische Universität Berlin 2019 Überdeckung Mathematik (DE-588)4186551-0 gnd rswk-swf Konvexe Geometrie (DE-588)4407260-0 gnd rswk-swf Konvexer Körper (DE-588)4165214-9 gnd rswk-swf Abstand (DE-588)4228463-6 gnd rswk-swf Gitterpunkt (DE-588)4157384-5 gnd rswk-swf Geometrie der Zahlen (DE-588)4227477-1 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Konvexe Geometrie (DE-588)4407260-0 s Geometrie der Zahlen (DE-588)4227477-1 s DE-604 Gitterpunkt (DE-588)4157384-5 s Überdeckung Mathematik (DE-588)4186551-0 s Konvexer Körper (DE-588)4165214-9 s Abstand (DE-588)4228463-6 s Erscheint auch als Druck-Ausgabe (DE-604)BV046334758 https://doi.org/10.14279/depositonce-9059 Resolving-System kostenfrei Volltext |
spellingShingle | Xue, Fei Convex geometry of numbers: covering, successive minima and Banach-Mazur distance Überdeckung Mathematik (DE-588)4186551-0 gnd Konvexe Geometrie (DE-588)4407260-0 gnd Konvexer Körper (DE-588)4165214-9 gnd Abstand (DE-588)4228463-6 gnd Gitterpunkt (DE-588)4157384-5 gnd Geometrie der Zahlen (DE-588)4227477-1 gnd |
subject_GND | (DE-588)4186551-0 (DE-588)4407260-0 (DE-588)4165214-9 (DE-588)4228463-6 (DE-588)4157384-5 (DE-588)4227477-1 (DE-588)4113937-9 |
title | Convex geometry of numbers: covering, successive minima and Banach-Mazur distance |
title_auth | Convex geometry of numbers: covering, successive minima and Banach-Mazur distance |
title_exact_search | Convex geometry of numbers: covering, successive minima and Banach-Mazur distance |
title_full | Convex geometry of numbers: covering, successive minima and Banach-Mazur distance vorgelegt von Master of Science (M.Sc.) Fei Xue |
title_fullStr | Convex geometry of numbers: covering, successive minima and Banach-Mazur distance vorgelegt von Master of Science (M.Sc.) Fei Xue |
title_full_unstemmed | Convex geometry of numbers: covering, successive minima and Banach-Mazur distance vorgelegt von Master of Science (M.Sc.) Fei Xue |
title_short | Convex geometry of numbers: covering, successive minima and Banach-Mazur distance |
title_sort | convex geometry of numbers covering successive minima and banach mazur distance |
topic | Überdeckung Mathematik (DE-588)4186551-0 gnd Konvexe Geometrie (DE-588)4407260-0 gnd Konvexer Körper (DE-588)4165214-9 gnd Abstand (DE-588)4228463-6 gnd Gitterpunkt (DE-588)4157384-5 gnd Geometrie der Zahlen (DE-588)4227477-1 gnd |
topic_facet | Überdeckung Mathematik Konvexe Geometrie Konvexer Körper Abstand Gitterpunkt Geometrie der Zahlen Hochschulschrift |
url | https://doi.org/10.14279/depositonce-9059 |
work_keys_str_mv | AT xuefei convexgeometryofnumberscoveringsuccessiveminimaandbanachmazurdistance |