Sugawara operators for classical Lie algebras:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2018]
|
Schriftenreihe: | Mathematical surveys and monographs
Volume 229 |
Schlagworte: | |
Online-Zugang: | UBM01 UBR01 URL des Erstveröffentlichers |
Beschreibung: | 1 Online-Ressource (xiv, 304 Seiten) Illustrationen |
ISBN: | 9781470443917 |
DOI: | 10.1090/surv/229 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV046299851 | ||
003 | DE-604 | ||
005 | 20230824 | ||
007 | cr|uuu---uuuuu | ||
008 | 191211s2018 xxu|||| o||u| ||||||eng d | ||
020 | |a 9781470443917 |c OnlineAusgabe |9 978-1-4704-4391-7 | ||
024 | 7 | |a 10.1090/surv/229 |2 doi | |
035 | |a (OCoLC)1135419698 | ||
035 | |a (DE-599)BVBBV046299851 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-19 |a DE-83 |a DE-355 |a DE-11 | ||
050 | 0 | |a QA252.3 | |
082 | 0 | |a 512/.482 |2 23 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Molev, Alexander |d 1961- |e Verfasser |0 (DE-588)1147020868 |4 aut | |
245 | 1 | 0 | |a Sugawara operators for classical Lie algebras |c Alexander Molev |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a 1 Online-Ressource (xiv, 304 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematical surveys and monographs |v Volume 229 | |
650 | 4 | |a Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Universal enveloping (super)algebras / msc | |
650 | 4 | |a Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Poisson algebras / msc | |
650 | 4 | |a Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras / msc | |
650 | 4 | |a Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Vertex operators; vertex operator algebras and related structures / msc | |
650 | 4 | |a Associative rings and algebras ... Rings and algebras arising under various constructions ... Universal enveloping algebras of Lie algebras / msc | |
650 | 4 | |a Lie algebras | |
650 | 4 | |a Affine algebraic groups | |
650 | 4 | |a Kac-Moody algebras | |
650 | 4 | |a Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Universal enveloping (super)algebras | |
650 | 4 | |a Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Poisson algebras | |
650 | 4 | |a Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras | |
650 | 4 | |a Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Vertex operators; vertex operator algebras and related structures | |
650 | 4 | |a Associative rings and algebras ... Rings and algebras arising under various constructions ... Universal enveloping algebras of Lie algebras | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4704-3659-9 |
830 | 0 | |a Mathematical surveys and monographs |v Volume 229 |w (DE-604)BV042339669 |9 229 | |
856 | 4 | 0 | |u https://doi.org/10.1090/surv/229 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-138-AMS | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031677200 | ||
966 | e | |u https://doi.org/10.1090/surv/229 |l UBM01 |p ZDB-138-AMS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1090/surv/229 |l UBR01 |p ZDB-138-AMS |q UBR Paketkauf 2022 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180768735363072 |
---|---|
any_adam_object | |
author | Molev, Alexander 1961- |
author_GND | (DE-588)1147020868 |
author_facet | Molev, Alexander 1961- |
author_role | aut |
author_sort | Molev, Alexander 1961- |
author_variant | a m am |
building | Verbundindex |
bvnumber | BV046299851 |
callnumber-first | Q - Science |
callnumber-label | QA252 |
callnumber-raw | QA252.3 |
callnumber-search | QA252.3 |
callnumber-sort | QA 3252.3 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 340 SK 230 |
collection | ZDB-138-AMS |
ctrlnum | (OCoLC)1135419698 (DE-599)BVBBV046299851 |
dewey-full | 512/.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.482 |
dewey-search | 512/.482 |
dewey-sort | 3512 3482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1090/surv/229 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03220nmm a2200577 cb4500</leader><controlfield tag="001">BV046299851</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230824 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">191211s2018 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470443917</subfield><subfield code="c">OnlineAusgabe</subfield><subfield code="9">978-1-4704-4391-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/surv/229</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1135419698</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046299851</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA252.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Molev, Alexander</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1147020868</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sugawara operators for classical Lie algebras</subfield><subfield code="c">Alexander Molev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 304 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical surveys and monographs</subfield><subfield code="v">Volume 229</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Universal enveloping (super)algebras / msc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Poisson algebras / msc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras / msc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Vertex operators; vertex operator algebras and related structures / msc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative rings and algebras ... Rings and algebras arising under various constructions ... Universal enveloping algebras of Lie algebras / msc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Affine algebraic groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kac-Moody algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Universal enveloping (super)algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Poisson algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Vertex operators; vertex operator algebras and related structures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative rings and algebras ... Rings and algebras arising under various constructions ... Universal enveloping algebras of Lie algebras</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4704-3659-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical surveys and monographs</subfield><subfield code="v">Volume 229</subfield><subfield code="w">(DE-604)BV042339669</subfield><subfield code="9">229</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1090/surv/229</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-138-AMS</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031677200</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/surv/229</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-138-AMS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/surv/229</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-138-AMS</subfield><subfield code="q">UBR Paketkauf 2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046299851 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:41:01Z |
institution | BVB |
isbn | 9781470443917 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031677200 |
oclc_num | 1135419698 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-83 DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-83 DE-355 DE-BY-UBR DE-11 |
physical | 1 Online-Ressource (xiv, 304 Seiten) Illustrationen |
psigel | ZDB-138-AMS ZDB-138-AMS UBR Paketkauf 2022 |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | American Mathematical Society |
record_format | marc |
series | Mathematical surveys and monographs |
series2 | Mathematical surveys and monographs |
spelling | Molev, Alexander 1961- Verfasser (DE-588)1147020868 aut Sugawara operators for classical Lie algebras Alexander Molev Providence, Rhode Island American Mathematical Society [2018] © 2018 1 Online-Ressource (xiv, 304 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Mathematical surveys and monographs Volume 229 Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Universal enveloping (super)algebras / msc Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Poisson algebras / msc Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras / msc Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Vertex operators; vertex operator algebras and related structures / msc Associative rings and algebras ... Rings and algebras arising under various constructions ... Universal enveloping algebras of Lie algebras / msc Lie algebras Affine algebraic groups Kac-Moody algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Universal enveloping (super)algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Poisson algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Vertex operators; vertex operator algebras and related structures Associative rings and algebras ... Rings and algebras arising under various constructions ... Universal enveloping algebras of Lie algebras Erscheint auch als Druck-Ausgabe 978-1-4704-3659-9 Mathematical surveys and monographs Volume 229 (DE-604)BV042339669 229 https://doi.org/10.1090/surv/229 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Molev, Alexander 1961- Sugawara operators for classical Lie algebras Mathematical surveys and monographs Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Universal enveloping (super)algebras / msc Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Poisson algebras / msc Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras / msc Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Vertex operators; vertex operator algebras and related structures / msc Associative rings and algebras ... Rings and algebras arising under various constructions ... Universal enveloping algebras of Lie algebras / msc Lie algebras Affine algebraic groups Kac-Moody algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Universal enveloping (super)algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Poisson algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Vertex operators; vertex operator algebras and related structures Associative rings and algebras ... Rings and algebras arising under various constructions ... Universal enveloping algebras of Lie algebras |
title | Sugawara operators for classical Lie algebras |
title_auth | Sugawara operators for classical Lie algebras |
title_exact_search | Sugawara operators for classical Lie algebras |
title_full | Sugawara operators for classical Lie algebras Alexander Molev |
title_fullStr | Sugawara operators for classical Lie algebras Alexander Molev |
title_full_unstemmed | Sugawara operators for classical Lie algebras Alexander Molev |
title_short | Sugawara operators for classical Lie algebras |
title_sort | sugawara operators for classical lie algebras |
topic | Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Universal enveloping (super)algebras / msc Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Poisson algebras / msc Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras / msc Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Vertex operators; vertex operator algebras and related structures / msc Associative rings and algebras ... Rings and algebras arising under various constructions ... Universal enveloping algebras of Lie algebras / msc Lie algebras Affine algebraic groups Kac-Moody algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Universal enveloping (super)algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Poisson algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Vertex operators; vertex operator algebras and related structures Associative rings and algebras ... Rings and algebras arising under various constructions ... Universal enveloping algebras of Lie algebras |
topic_facet | Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Universal enveloping (super)algebras / msc Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Poisson algebras / msc Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras / msc Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Vertex operators; vertex operator algebras and related structures / msc Associative rings and algebras ... Rings and algebras arising under various constructions ... Universal enveloping algebras of Lie algebras / msc Lie algebras Affine algebraic groups Kac-Moody algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Universal enveloping (super)algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Poisson algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras Nonassociative rings and algebras ... Lie algebras and Lie superalgebras ... Vertex operators; vertex operator algebras and related structures Associative rings and algebras ... Rings and algebras arising under various constructions ... Universal enveloping algebras of Lie algebras |
url | https://doi.org/10.1090/surv/229 |
volume_link | (DE-604)BV042339669 |
work_keys_str_mv | AT molevalexander sugawaraoperatorsforclassicalliealgebras |