Discrete Morse theory:
Discrete Morse theory is a powerful tool combining ideas in both topology and combinatorics. Invented by Robin Forman in the mid 1990s, discrete Morse theory is a combinatorial analogue of Marston Morse's classical Morse theory. Its applications are vast, including applications to topological d...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2019]
|
Schriftenreihe: | Student mathematical library
Volume 90 |
Schlagworte: | |
Zusammenfassung: | Discrete Morse theory is a powerful tool combining ideas in both topology and combinatorics. Invented by Robin Forman in the mid 1990s, discrete Morse theory is a combinatorial analogue of Marston Morse's classical Morse theory. Its applications are vast, including applications to topological data analysis, combinatorics, and computer science. This book, the first one devoted solely to discrete Morse theory, serves as an introduction to the subject. Since the book restricts the study of discrete Morse theory to abstract simplicial complexes, a course in mathematical proof writing is the only prerequisite needed. Topics covered include simplicial complexes, simple homotopy, collapsibility, gradient vector fields, Hasse diagrams, simplicial homology, persistent homology, discrete Morse inequalities, the Morse complex, discrete Morse homology, and strong discrete Morse functions. Students of computer science will also find the book beneficial as it includes topics such as Boolean functions, evasiveness, and has a chapter devoted to some computational aspects of discrete Morse theory. The book is appropriate for a course in discrete Morse theory, a supplemental text to a course in algebraic topology or topological combinatorics, or an independent study |
Beschreibung: | xiv, 273 Seiten Illustrationen 22 cm |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV046299094 | ||
003 | DE-604 | ||
005 | 20200727 | ||
007 | t | ||
008 | 191211s2019 a||| |||| 00||| eng d | ||
020 | |z 9781470452988 |c pb |9 978-1-4704-5298-8 | ||
020 | |z 1470452987 |9 1470452987 | ||
035 | |a (OCoLC)1131809363 | ||
035 | |a (DE-599)BVBBV046299094 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-83 |a DE-188 | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a 55U05 |2 msc | ||
084 | |a 57Q05 |2 msc | ||
084 | |a 58E05 |2 msc | ||
100 | 1 | |a Scoville, Nicholas A. |0 (DE-588)1199301965 |4 aut | |
245 | 1 | 0 | |a Discrete Morse theory |c Nicholas A. Scoville |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a xiv, 273 Seiten |b Illustrationen |c 22 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Student mathematical library |v Volume 90 | |
505 | 8 | |a What is discrete Morse theory? -- Simplicial complexes -- Discrete Morse theory -- Simplicial homology -- Main theorems of discrete Morse theory -- Discrete Morse theory and persistent homology -- Boolean functions and evasiveness -- The Morse complex -- Morse homology -- Computations with discrete Morse theory -- Strong discrete Morse theory | |
520 | |a Discrete Morse theory is a powerful tool combining ideas in both topology and combinatorics. Invented by Robin Forman in the mid 1990s, discrete Morse theory is a combinatorial analogue of Marston Morse's classical Morse theory. Its applications are vast, including applications to topological data analysis, combinatorics, and computer science. This book, the first one devoted solely to discrete Morse theory, serves as an introduction to the subject. Since the book restricts the study of discrete Morse theory to abstract simplicial complexes, a course in mathematical proof writing is the only prerequisite needed. Topics covered include simplicial complexes, simple homotopy, collapsibility, gradient vector fields, Hasse diagrams, simplicial homology, persistent homology, discrete Morse inequalities, the Morse complex, discrete Morse homology, and strong discrete Morse functions. Students of computer science will also find the book beneficial as it includes topics such as Boolean functions, evasiveness, and has a chapter devoted to some computational aspects of discrete Morse theory. The book is appropriate for a course in discrete Morse theory, a supplemental text to a course in algebraic topology or topological combinatorics, or an independent study | ||
650 | 4 | |a Morse theory | |
650 | 4 | |a Homotopy theory | |
650 | 4 | |a Geometry, Differential | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Homotopy theory |2 fast | |
650 | 7 | |a Morse theory |2 fast | |
650 | 0 | 7 | |a Morse-Theorie |0 (DE-588)4197103-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Morse-Theorie |0 (DE-588)4197103-6 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Student mathematical library |v Volume 90 |w (DE-604)BV013184751 |9 90 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-031676461 |
Datensatz im Suchindex
_version_ | 1804180767268405248 |
---|---|
any_adam_object | |
author | Scoville, Nicholas A. |
author_GND | (DE-588)1199301965 |
author_facet | Scoville, Nicholas A. |
author_role | aut |
author_sort | Scoville, Nicholas A. |
author_variant | n a s na nas |
building | Verbundindex |
bvnumber | BV046299094 |
classification_rvk | SK 350 |
contents | What is discrete Morse theory? -- Simplicial complexes -- Discrete Morse theory -- Simplicial homology -- Main theorems of discrete Morse theory -- Discrete Morse theory and persistent homology -- Boolean functions and evasiveness -- The Morse complex -- Morse homology -- Computations with discrete Morse theory -- Strong discrete Morse theory |
ctrlnum | (OCoLC)1131809363 (DE-599)BVBBV046299094 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03113nam a2200481 cb4500</leader><controlfield tag="001">BV046299094</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200727 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">191211s2019 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781470452988</subfield><subfield code="c">pb</subfield><subfield code="9">978-1-4704-5298-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1470452987</subfield><subfield code="9">1470452987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1131809363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046299094</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55U05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57Q05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58E05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scoville, Nicholas A.</subfield><subfield code="0">(DE-588)1199301965</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrete Morse theory</subfield><subfield code="c">Nicholas A. Scoville</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 273 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">22 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Student mathematical library</subfield><subfield code="v">Volume 90</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">What is discrete Morse theory? -- Simplicial complexes -- Discrete Morse theory -- Simplicial homology -- Main theorems of discrete Morse theory -- Discrete Morse theory and persistent homology -- Boolean functions and evasiveness -- The Morse complex -- Morse homology -- Computations with discrete Morse theory -- Strong discrete Morse theory</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Discrete Morse theory is a powerful tool combining ideas in both topology and combinatorics. Invented by Robin Forman in the mid 1990s, discrete Morse theory is a combinatorial analogue of Marston Morse's classical Morse theory. Its applications are vast, including applications to topological data analysis, combinatorics, and computer science. This book, the first one devoted solely to discrete Morse theory, serves as an introduction to the subject. Since the book restricts the study of discrete Morse theory to abstract simplicial complexes, a course in mathematical proof writing is the only prerequisite needed. Topics covered include simplicial complexes, simple homotopy, collapsibility, gradient vector fields, Hasse diagrams, simplicial homology, persistent homology, discrete Morse inequalities, the Morse complex, discrete Morse homology, and strong discrete Morse functions. Students of computer science will also find the book beneficial as it includes topics such as Boolean functions, evasiveness, and has a chapter devoted to some computational aspects of discrete Morse theory. The book is appropriate for a course in discrete Morse theory, a supplemental text to a course in algebraic topology or topological combinatorics, or an independent study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morse theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homotopy theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Morse theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Morse-Theorie</subfield><subfield code="0">(DE-588)4197103-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Morse-Theorie</subfield><subfield code="0">(DE-588)4197103-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Student mathematical library</subfield><subfield code="v">Volume 90</subfield><subfield code="w">(DE-604)BV013184751</subfield><subfield code="9">90</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031676461</subfield></datafield></record></collection> |
id | DE-604.BV046299094 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:40:59Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031676461 |
oclc_num | 1131809363 |
open_access_boolean | |
owner | DE-20 DE-83 DE-188 |
owner_facet | DE-20 DE-83 DE-188 |
physical | xiv, 273 Seiten Illustrationen 22 cm |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | American Mathematical Society |
record_format | marc |
series | Student mathematical library |
series2 | Student mathematical library |
spelling | Scoville, Nicholas A. (DE-588)1199301965 aut Discrete Morse theory Nicholas A. Scoville Providence, Rhode Island American Mathematical Society [2019] © 2019 xiv, 273 Seiten Illustrationen 22 cm txt rdacontent n rdamedia nc rdacarrier Student mathematical library Volume 90 What is discrete Morse theory? -- Simplicial complexes -- Discrete Morse theory -- Simplicial homology -- Main theorems of discrete Morse theory -- Discrete Morse theory and persistent homology -- Boolean functions and evasiveness -- The Morse complex -- Morse homology -- Computations with discrete Morse theory -- Strong discrete Morse theory Discrete Morse theory is a powerful tool combining ideas in both topology and combinatorics. Invented by Robin Forman in the mid 1990s, discrete Morse theory is a combinatorial analogue of Marston Morse's classical Morse theory. Its applications are vast, including applications to topological data analysis, combinatorics, and computer science. This book, the first one devoted solely to discrete Morse theory, serves as an introduction to the subject. Since the book restricts the study of discrete Morse theory to abstract simplicial complexes, a course in mathematical proof writing is the only prerequisite needed. Topics covered include simplicial complexes, simple homotopy, collapsibility, gradient vector fields, Hasse diagrams, simplicial homology, persistent homology, discrete Morse inequalities, the Morse complex, discrete Morse homology, and strong discrete Morse functions. Students of computer science will also find the book beneficial as it includes topics such as Boolean functions, evasiveness, and has a chapter devoted to some computational aspects of discrete Morse theory. The book is appropriate for a course in discrete Morse theory, a supplemental text to a course in algebraic topology or topological combinatorics, or an independent study Morse theory Homotopy theory Geometry, Differential Geometry, Differential fast Homotopy theory fast Morse theory fast Morse-Theorie (DE-588)4197103-6 gnd rswk-swf Morse-Theorie (DE-588)4197103-6 s DE-604 Student mathematical library Volume 90 (DE-604)BV013184751 90 |
spellingShingle | Scoville, Nicholas A. Discrete Morse theory Student mathematical library What is discrete Morse theory? -- Simplicial complexes -- Discrete Morse theory -- Simplicial homology -- Main theorems of discrete Morse theory -- Discrete Morse theory and persistent homology -- Boolean functions and evasiveness -- The Morse complex -- Morse homology -- Computations with discrete Morse theory -- Strong discrete Morse theory Morse theory Homotopy theory Geometry, Differential Geometry, Differential fast Homotopy theory fast Morse theory fast Morse-Theorie (DE-588)4197103-6 gnd |
subject_GND | (DE-588)4197103-6 |
title | Discrete Morse theory |
title_auth | Discrete Morse theory |
title_exact_search | Discrete Morse theory |
title_full | Discrete Morse theory Nicholas A. Scoville |
title_fullStr | Discrete Morse theory Nicholas A. Scoville |
title_full_unstemmed | Discrete Morse theory Nicholas A. Scoville |
title_short | Discrete Morse theory |
title_sort | discrete morse theory |
topic | Morse theory Homotopy theory Geometry, Differential Geometry, Differential fast Homotopy theory fast Morse theory fast Morse-Theorie (DE-588)4197103-6 gnd |
topic_facet | Morse theory Homotopy theory Geometry, Differential Morse-Theorie |
volume_link | (DE-604)BV013184751 |
work_keys_str_mv | AT scovillenicholasa discretemorsetheory |