Practical deep learning for cloud, mobile, and edge: real-world AI and computer vision projects using Python, Keras and TensorFlow
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Beijing
O'Reilly
2019
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | FHD01 HTW01 |
Beschreibung: | Includes index |
Beschreibung: | 1 Online-Ressource (viii, 585 Seiten) |
ISBN: | 9781492034810 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV046259573 | ||
003 | DE-604 | ||
005 | 20200403 | ||
007 | cr|uuu---uuuuu | ||
008 | 191118s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781492034810 |9 978-1-492-03481-0 | ||
035 | |a (OCoLC)1128856236 | ||
035 | |a (DE-599)BVBBV046259573 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-523 | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Koul, Anirudh |e Verfasser |4 aut | |
245 | 1 | 0 | |a Practical deep learning for cloud, mobile, and edge |b real-world AI and computer vision projects using Python, Keras and TensorFlow |c Anirudh Koul, Siddha Ganju, and Meher Kasam |
246 | 1 | 0 | |a Real-world AI and computer-vision projects using Python, Keras, and TensorFlow |
250 | |a First edition | ||
264 | 1 | |a Beijing |b O'Reilly |c 2019 | |
300 | |a 1 Online-Ressource (viii, 585 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes index | ||
505 | 8 | |a Exploring the landscape of Artificial Intelligence -- What's in the picture: image classification with Keras -- Cats versus dogs: transfer learning in 30 lines with Keras -- Building a reverse image search engine: understanding embeddings -- From novice to master predictor: maximizing convolutional neural network accurcy -- Maximizing speed and performance of TensorFlow: a handy checklist -- Practical tools, tips, and tricks -- Cloud APIs for computer vision: up and running in 15 minutes -- Scalable inference serving on Cloud with TensorFlow Serving and KubeFlow -- AI in the browser with TensorFlow.js and mI5.js -- Real-time object classification on iOS with Core ML -- Not hotdog on iOS with Core ML and Create ML -- Shazam for food: developing android apps with TensorFlow Lite and ML Kit -- Building the purrfect cat locator app with TensorFlow Object Detection API -- Becoming a maker: exploring embedded AI at the edge -- Simulating a self-driving car using end-to-end deep learning with Keras -- Building an autonomous car in under an hour: reinforcement learning with AWS DeepRacer | |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a TensorFlow |0 (DE-588)1153577011 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
653 | 0 | |a Artificial intelligence | |
653 | 0 | |a Application software | |
653 | 0 | |a Application software | |
653 | 0 | |a Artificial intelligence | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | 2 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |D s |
689 | 0 | 3 | |a TensorFlow |0 (DE-588)1153577011 |D s |
689 | 0 | 4 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 5 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Ganju, Siddha |e Verfasser |4 aut | |
700 | 1 | |a Kasam, Meher |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-492-03479-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-492-03486-5 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031637610 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=5945145 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/htw-berlin/detail.action?docID=5945145 |l HTW01 |p ZDB-30-PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180693238939648 |
---|---|
any_adam_object | |
author | Koul, Anirudh Ganju, Siddha Kasam, Meher |
author_facet | Koul, Anirudh Ganju, Siddha Kasam, Meher |
author_role | aut aut aut |
author_sort | Koul, Anirudh |
author_variant | a k ak s g sg m k mk |
building | Verbundindex |
bvnumber | BV046259573 |
classification_rvk | ST 250 ST 300 |
collection | ZDB-30-PQE |
contents | Exploring the landscape of Artificial Intelligence -- What's in the picture: image classification with Keras -- Cats versus dogs: transfer learning in 30 lines with Keras -- Building a reverse image search engine: understanding embeddings -- From novice to master predictor: maximizing convolutional neural network accurcy -- Maximizing speed and performance of TensorFlow: a handy checklist -- Practical tools, tips, and tricks -- Cloud APIs for computer vision: up and running in 15 minutes -- Scalable inference serving on Cloud with TensorFlow Serving and KubeFlow -- AI in the browser with TensorFlow.js and mI5.js -- Real-time object classification on iOS with Core ML -- Not hotdog on iOS with Core ML and Create ML -- Shazam for food: developing android apps with TensorFlow Lite and ML Kit -- Building the purrfect cat locator app with TensorFlow Object Detection API -- Becoming a maker: exploring embedded AI at the edge -- Simulating a self-driving car using end-to-end deep learning with Keras -- Building an autonomous car in under an hour: reinforcement learning with AWS DeepRacer |
ctrlnum | (OCoLC)1128856236 (DE-599)BVBBV046259573 |
discipline | Informatik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03816nmm a2200625 c 4500</leader><controlfield tag="001">BV046259573</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200403 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">191118s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492034810</subfield><subfield code="9">978-1-492-03481-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1128856236</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046259573</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-523</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koul, Anirudh</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical deep learning for cloud, mobile, and edge</subfield><subfield code="b">real-world AI and computer vision projects using Python, Keras and TensorFlow</subfield><subfield code="c">Anirudh Koul, Siddha Ganju, and Meher Kasam</subfield></datafield><datafield tag="246" ind1="1" ind2="0"><subfield code="a">Real-world AI and computer-vision projects using Python, Keras, and TensorFlow</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (viii, 585 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Exploring the landscape of Artificial Intelligence -- What's in the picture: image classification with Keras -- Cats versus dogs: transfer learning in 30 lines with Keras -- Building a reverse image search engine: understanding embeddings -- From novice to master predictor: maximizing convolutional neural network accurcy -- Maximizing speed and performance of TensorFlow: a handy checklist -- Practical tools, tips, and tricks -- Cloud APIs for computer vision: up and running in 15 minutes -- Scalable inference serving on Cloud with TensorFlow Serving and KubeFlow -- AI in the browser with TensorFlow.js and mI5.js -- Real-time object classification on iOS with Core ML -- Not hotdog on iOS with Core ML and Create ML -- Shazam for food: developing android apps with TensorFlow Lite and ML Kit -- Building the purrfect cat locator app with TensorFlow Object Detection API -- Becoming a maker: exploring embedded AI at the edge -- Simulating a self-driving car using end-to-end deep learning with Keras -- Building an autonomous car in under an hour: reinforcement learning with AWS DeepRacer</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">TensorFlow</subfield><subfield code="0">(DE-588)1153577011</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Application software</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Application software</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">TensorFlow</subfield><subfield code="0">(DE-588)1153577011</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ganju, Siddha</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kasam, Meher</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-492-03479-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-492-03486-5</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031637610</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=5945145</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/htw-berlin/detail.action?docID=5945145</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046259573 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:39:49Z |
institution | BVB |
isbn | 9781492034810 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031637610 |
oclc_num | 1128856236 |
open_access_boolean | |
owner | DE-1050 DE-523 |
owner_facet | DE-1050 DE-523 |
physical | 1 Online-Ressource (viii, 585 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE FHD01_PQE_Kauf |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | O'Reilly |
record_format | marc |
spelling | Koul, Anirudh Verfasser aut Practical deep learning for cloud, mobile, and edge real-world AI and computer vision projects using Python, Keras and TensorFlow Anirudh Koul, Siddha Ganju, and Meher Kasam Real-world AI and computer-vision projects using Python, Keras, and TensorFlow First edition Beijing O'Reilly 2019 1 Online-Ressource (viii, 585 Seiten) txt rdacontent c rdamedia cr rdacarrier Includes index Exploring the landscape of Artificial Intelligence -- What's in the picture: image classification with Keras -- Cats versus dogs: transfer learning in 30 lines with Keras -- Building a reverse image search engine: understanding embeddings -- From novice to master predictor: maximizing convolutional neural network accurcy -- Maximizing speed and performance of TensorFlow: a handy checklist -- Practical tools, tips, and tricks -- Cloud APIs for computer vision: up and running in 15 minutes -- Scalable inference serving on Cloud with TensorFlow Serving and KubeFlow -- AI in the browser with TensorFlow.js and mI5.js -- Real-time object classification on iOS with Core ML -- Not hotdog on iOS with Core ML and Create ML -- Shazam for food: developing android apps with TensorFlow Lite and ML Kit -- Building the purrfect cat locator app with TensorFlow Object Detection API -- Becoming a maker: exploring embedded AI at the edge -- Simulating a self-driving car using end-to-end deep learning with Keras -- Building an autonomous car in under an hour: reinforcement learning with AWS DeepRacer Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Deep learning (DE-588)1135597375 gnd rswk-swf TensorFlow (DE-588)1153577011 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Keras Framework, Informatik (DE-588)1160521077 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Artificial intelligence Application software Maschinelles Lernen (DE-588)4193754-5 s Deep learning (DE-588)1135597375 s Keras Framework, Informatik (DE-588)1160521077 s TensorFlow (DE-588)1153577011 s Künstliche Intelligenz (DE-588)4033447-8 s Python Programmiersprache (DE-588)4434275-5 s 1\p DE-604 Ganju, Siddha Verfasser aut Kasam, Meher Verfasser aut Erscheint auch als Online-Ausgabe 978-1-492-03479-7 Erscheint auch als Druck-Ausgabe 978-1-492-03486-5 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Koul, Anirudh Ganju, Siddha Kasam, Meher Practical deep learning for cloud, mobile, and edge real-world AI and computer vision projects using Python, Keras and TensorFlow Exploring the landscape of Artificial Intelligence -- What's in the picture: image classification with Keras -- Cats versus dogs: transfer learning in 30 lines with Keras -- Building a reverse image search engine: understanding embeddings -- From novice to master predictor: maximizing convolutional neural network accurcy -- Maximizing speed and performance of TensorFlow: a handy checklist -- Practical tools, tips, and tricks -- Cloud APIs for computer vision: up and running in 15 minutes -- Scalable inference serving on Cloud with TensorFlow Serving and KubeFlow -- AI in the browser with TensorFlow.js and mI5.js -- Real-time object classification on iOS with Core ML -- Not hotdog on iOS with Core ML and Create ML -- Shazam for food: developing android apps with TensorFlow Lite and ML Kit -- Building the purrfect cat locator app with TensorFlow Object Detection API -- Becoming a maker: exploring embedded AI at the edge -- Simulating a self-driving car using end-to-end deep learning with Keras -- Building an autonomous car in under an hour: reinforcement learning with AWS DeepRacer Python Programmiersprache (DE-588)4434275-5 gnd Deep learning (DE-588)1135597375 gnd TensorFlow (DE-588)1153577011 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Keras Framework, Informatik (DE-588)1160521077 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
subject_GND | (DE-588)4434275-5 (DE-588)1135597375 (DE-588)1153577011 (DE-588)4193754-5 (DE-588)1160521077 (DE-588)4033447-8 |
title | Practical deep learning for cloud, mobile, and edge real-world AI and computer vision projects using Python, Keras and TensorFlow |
title_alt | Real-world AI and computer-vision projects using Python, Keras, and TensorFlow |
title_auth | Practical deep learning for cloud, mobile, and edge real-world AI and computer vision projects using Python, Keras and TensorFlow |
title_exact_search | Practical deep learning for cloud, mobile, and edge real-world AI and computer vision projects using Python, Keras and TensorFlow |
title_full | Practical deep learning for cloud, mobile, and edge real-world AI and computer vision projects using Python, Keras and TensorFlow Anirudh Koul, Siddha Ganju, and Meher Kasam |
title_fullStr | Practical deep learning for cloud, mobile, and edge real-world AI and computer vision projects using Python, Keras and TensorFlow Anirudh Koul, Siddha Ganju, and Meher Kasam |
title_full_unstemmed | Practical deep learning for cloud, mobile, and edge real-world AI and computer vision projects using Python, Keras and TensorFlow Anirudh Koul, Siddha Ganju, and Meher Kasam |
title_short | Practical deep learning for cloud, mobile, and edge |
title_sort | practical deep learning for cloud mobile and edge real world ai and computer vision projects using python keras and tensorflow |
title_sub | real-world AI and computer vision projects using Python, Keras and TensorFlow |
topic | Python Programmiersprache (DE-588)4434275-5 gnd Deep learning (DE-588)1135597375 gnd TensorFlow (DE-588)1153577011 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Keras Framework, Informatik (DE-588)1160521077 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
topic_facet | Python Programmiersprache Deep learning TensorFlow Maschinelles Lernen Keras Framework, Informatik Künstliche Intelligenz |
work_keys_str_mv | AT koulanirudh practicaldeeplearningforcloudmobileandedgerealworldaiandcomputervisionprojectsusingpythonkerasandtensorflow AT ganjusiddha practicaldeeplearningforcloudmobileandedgerealworldaiandcomputervisionprojectsusingpythonkerasandtensorflow AT kasammeher practicaldeeplearningforcloudmobileandedgerealworldaiandcomputervisionprojectsusingpythonkerasandtensorflow AT koulanirudh realworldaiandcomputervisionprojectsusingpythonkerasandtensorflow AT ganjusiddha realworldaiandcomputervisionprojectsusingpythonkerasandtensorflow AT kasammeher realworldaiandcomputervisionprojectsusingpythonkerasandtensorflow |