Eisenstein Cohomology for GL‹sub›N‹/sub› and the Special Values of Rankin–Selberg L-Functions:
This book studies the interplay between the geometry and topology of locally symmetric spaces, and the arithmetic aspects of the special values of L-functions.The authors study the cohomology of locally symmetric spaces for GL(N) where the cohomology groups are with coefficients in a local system at...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton ; NJ
Princeton University Press
[2020]
|
Schriftenreihe: | Annals of mathematics studies
Number 203 |
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-Aug4 DE-898 DE-859 DE-860 DE-91 DE-20 DE-739 UYW01 URL des Erstveröffentlichers |
Zusammenfassung: | This book studies the interplay between the geometry and topology of locally symmetric spaces, and the arithmetic aspects of the special values of L-functions.The authors study the cohomology of locally symmetric spaces for GL(N) where the cohomology groups are with coefficients in a local system attached to a finite-dimensional algebraic representation of GL(N). The image of the global cohomology in the cohomology of the Borel–Serre boundary is called Eisenstein cohomology, since at a transcendental level the cohomology classes may be described in terms of Eisenstein series and induced representations. However, because the groups are sheaf-theoretically defined, one can control their rationality and even integrality properties. A celebrated theorem by Langlands describes the constant term of an Eisenstein series in terms of automorphic L-functions. A cohomological interpretation of this theorem in terms of maps in Eisenstein cohomology allows the authors to study the rationality properties of the special values of Rankin–Selberg L-functions for GL(n) x GL(m), where n + m = N. The authors carry through the entire program with an eye toward generalizations.This book should be of interest to advanced graduate students and researchers interested in number theory, automorphic forms, representation theory, and the cohomology of arithmetic groups |
Beschreibung: | 1 Online-Ressource (ix,236 Seiten) Illustrationen |
ISBN: | 9780691197937 |
DOI: | 10.1515/9780691197937 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV046256894 | ||
003 | DE-604 | ||
005 | 20240917 | ||
007 | cr|uuu---uuuuu | ||
008 | 191115s2020 |||| o||u| ||||||eng d | ||
020 | |a 9780691197937 |9 978-0-691-19793-7 | ||
024 | 7 | |a 10.1515/9780691197937 |2 doi | |
035 | |a (ZDB-23-DGG)9780691197937 | ||
035 | |a (OCoLC)1128852060 | ||
035 | |a (DE-599)BVBBV046256894 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-1043 |a DE-91 |a DE-20 |a DE-858 |a DE-83 |a DE-706 |a DE-898 | ||
082 | 0 | |a 514/.23 |2 23 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
100 | 1 | |a Raghuram, A. |0 (DE-588)1132154081 |4 aut | |
245 | 1 | 0 | |a Eisenstein Cohomology for GL‹sub›N‹/sub› and the Special Values of Rankin–Selberg L-Functions |c Günter Harder ; Anantharam Raghuram |
264 | 1 | |a Princeton ; NJ |b Princeton University Press |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a 1 Online-Ressource (ix,236 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies |v Number 203 | |
520 | |a This book studies the interplay between the geometry and topology of locally symmetric spaces, and the arithmetic aspects of the special values of L-functions.The authors study the cohomology of locally symmetric spaces for GL(N) where the cohomology groups are with coefficients in a local system attached to a finite-dimensional algebraic representation of GL(N). The image of the global cohomology in the cohomology of the Borel–Serre boundary is called Eisenstein cohomology, since at a transcendental level the cohomology classes may be described in terms of Eisenstein series and induced representations. However, because the groups are sheaf-theoretically defined, one can control their rationality and even integrality properties. A celebrated theorem by Langlands describes the constant term of an Eisenstein series in terms of automorphic L-functions. A cohomological interpretation of this theorem in terms of maps in Eisenstein cohomology allows the authors to study the rationality properties of the special values of Rankin–Selberg L-functions for GL(n) x GL(m), where n + m = N. The authors carry through the entire program with an eye toward generalizations.This book should be of interest to advanced graduate students and researchers interested in number theory, automorphic forms, representation theory, and the cohomology of arithmetic groups | ||
546 | |a In English | ||
650 | 7 | |a MATHEMATICS / Number Theory |2 bisacsh | |
650 | 4 | |a Arithmetic groups | |
650 | 4 | |a Cohomology operations | |
650 | 4 | |a L-functions | |
650 | 4 | |a Number theory | |
650 | 4 | |a Shimura varieties | |
700 | 1 | |a Harder, Günter |d 1938- |0 (DE-588)1011622483 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-691-19788-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-0-691-19789-0 |
830 | 0 | |a Annals of mathematics studies |v Number 203 |w (DE-604)BV040389493 |9 203 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691197937 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA |a ZDB-23-PST | ||
940 | 1 | |q ZDB-23-DMA19 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031635003 | |
966 | e | |u https://doi.org/10.1515/9780691197937?locatt=mode:legacy |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691197937?locatt=mode:legacy |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691197937?locatt=mode:legacy |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691197937?locatt=mode:legacy |l DE-Aug4 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691197937?locatt=mode:legacy |l DE-898 |p ZDB-23-DMA |q ZDB-23-DMA19 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691197937?locatt=mode:legacy |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691197937?locatt=mode:legacy |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691197937?locatt=mode:legacy |l DE-91 |p ZDB-23-DMA |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691197937?locatt=mode:legacy |l DE-20 |p ZDB-23-DMA |q ZDB-23-DMA19 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691197937?locatt=mode:legacy |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691197937?locatt=mode:legacy |l UYW01 |p ZDB-23-DMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1810459874129084416 |
---|---|
adam_text | |
any_adam_object | |
author | Raghuram, A. Harder, Günter 1938- |
author_GND | (DE-588)1132154081 (DE-588)1011622483 |
author_facet | Raghuram, A. Harder, Günter 1938- |
author_role | aut aut |
author_sort | Raghuram, A. |
author_variant | a r ar g h gh |
building | Verbundindex |
bvnumber | BV046256894 |
classification_rvk | SI 830 |
collection | ZDB-23-DGG ZDB-23-DMA ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9780691197937 (OCoLC)1128852060 (DE-599)BVBBV046256894 |
dewey-full | 514/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.23 |
dewey-search | 514/.23 |
dewey-sort | 3514 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9780691197937 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 cb4500</leader><controlfield tag="001">BV046256894</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240917</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">191115s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691197937</subfield><subfield code="9">978-0-691-19793-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691197937</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691197937</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1128852060</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046256894</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.23</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Raghuram, A.</subfield><subfield code="0">(DE-588)1132154081</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Eisenstein Cohomology for GL‹sub›N‹/sub› and the Special Values of Rankin–Selberg L-Functions</subfield><subfield code="c">Günter Harder ; Anantharam Raghuram</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton ; NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix,236 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 203</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book studies the interplay between the geometry and topology of locally symmetric spaces, and the arithmetic aspects of the special values of L-functions.The authors study the cohomology of locally symmetric spaces for GL(N) where the cohomology groups are with coefficients in a local system attached to a finite-dimensional algebraic representation of GL(N). The image of the global cohomology in the cohomology of the Borel–Serre boundary is called Eisenstein cohomology, since at a transcendental level the cohomology classes may be described in terms of Eisenstein series and induced representations. However, because the groups are sheaf-theoretically defined, one can control their rationality and even integrality properties. A celebrated theorem by Langlands describes the constant term of an Eisenstein series in terms of automorphic L-functions. A cohomological interpretation of this theorem in terms of maps in Eisenstein cohomology allows the authors to study the rationality properties of the special values of Rankin–Selberg L-functions for GL(n) x GL(m), where n + m = N. The authors carry through the entire program with an eye toward generalizations.This book should be of interest to advanced graduate students and researchers interested in number theory, automorphic forms, representation theory, and the cohomology of arithmetic groups</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Number Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arithmetic groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohomology operations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">L-functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shimura varieties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harder, Günter</subfield><subfield code="d">1938-</subfield><subfield code="0">(DE-588)1011622483</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-691-19788-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-691-19789-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 203</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">203</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691197937</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA19</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031635003</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197937?locatt=mode:legacy</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197937?locatt=mode:legacy</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197937?locatt=mode:legacy</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197937?locatt=mode:legacy</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197937?locatt=mode:legacy</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197937?locatt=mode:legacy</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197937?locatt=mode:legacy</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197937?locatt=mode:legacy</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197937?locatt=mode:legacy</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197937?locatt=mode:legacy</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691197937?locatt=mode:legacy</subfield><subfield code="l">UYW01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046256894 |
illustrated | Not Illustrated |
indexdate | 2024-09-17T16:04:42Z |
institution | BVB |
isbn | 9780691197937 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031635003 |
oclc_num | 1128852060 |
open_access_boolean | |
owner | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-1043 DE-91 DE-BY-TUM DE-20 DE-858 DE-83 DE-706 DE-898 DE-BY-UBR |
owner_facet | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-1043 DE-91 DE-BY-TUM DE-20 DE-858 DE-83 DE-706 DE-898 DE-BY-UBR |
physical | 1 Online-Ressource (ix,236 Seiten) Illustrationen |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-PST ZDB-23-DMA19 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA19 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of mathematics studies |
series2 | Annals of mathematics studies |
spelling | Raghuram, A. (DE-588)1132154081 aut Eisenstein Cohomology for GL‹sub›N‹/sub› and the Special Values of Rankin–Selberg L-Functions Günter Harder ; Anantharam Raghuram Princeton ; NJ Princeton University Press [2020] © 2020 1 Online-Ressource (ix,236 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies Number 203 This book studies the interplay between the geometry and topology of locally symmetric spaces, and the arithmetic aspects of the special values of L-functions.The authors study the cohomology of locally symmetric spaces for GL(N) where the cohomology groups are with coefficients in a local system attached to a finite-dimensional algebraic representation of GL(N). The image of the global cohomology in the cohomology of the Borel–Serre boundary is called Eisenstein cohomology, since at a transcendental level the cohomology classes may be described in terms of Eisenstein series and induced representations. However, because the groups are sheaf-theoretically defined, one can control their rationality and even integrality properties. A celebrated theorem by Langlands describes the constant term of an Eisenstein series in terms of automorphic L-functions. A cohomological interpretation of this theorem in terms of maps in Eisenstein cohomology allows the authors to study the rationality properties of the special values of Rankin–Selberg L-functions for GL(n) x GL(m), where n + m = N. The authors carry through the entire program with an eye toward generalizations.This book should be of interest to advanced graduate students and researchers interested in number theory, automorphic forms, representation theory, and the cohomology of arithmetic groups In English MATHEMATICS / Number Theory bisacsh Arithmetic groups Cohomology operations L-functions Number theory Shimura varieties Harder, Günter 1938- (DE-588)1011622483 aut Erscheint auch als Druck-Ausgabe, Hardcover 978-0-691-19788-3 Erscheint auch als Druck-Ausgabe, Paperback 978-0-691-19789-0 Annals of mathematics studies Number 203 (DE-604)BV040389493 203 https://doi.org/10.1515/9780691197937 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Raghuram, A. Harder, Günter 1938- Eisenstein Cohomology for GL‹sub›N‹/sub› and the Special Values of Rankin–Selberg L-Functions Annals of mathematics studies MATHEMATICS / Number Theory bisacsh Arithmetic groups Cohomology operations L-functions Number theory Shimura varieties |
title | Eisenstein Cohomology for GL‹sub›N‹/sub› and the Special Values of Rankin–Selberg L-Functions |
title_auth | Eisenstein Cohomology for GL‹sub›N‹/sub› and the Special Values of Rankin–Selberg L-Functions |
title_exact_search | Eisenstein Cohomology for GL‹sub›N‹/sub› and the Special Values of Rankin–Selberg L-Functions |
title_full | Eisenstein Cohomology for GL‹sub›N‹/sub› and the Special Values of Rankin–Selberg L-Functions Günter Harder ; Anantharam Raghuram |
title_fullStr | Eisenstein Cohomology for GL‹sub›N‹/sub› and the Special Values of Rankin–Selberg L-Functions Günter Harder ; Anantharam Raghuram |
title_full_unstemmed | Eisenstein Cohomology for GL‹sub›N‹/sub› and the Special Values of Rankin–Selberg L-Functions Günter Harder ; Anantharam Raghuram |
title_short | Eisenstein Cohomology for GL‹sub›N‹/sub› and the Special Values of Rankin–Selberg L-Functions |
title_sort | eisenstein cohomology for gl sub n sub and the special values of rankin selberg l functions |
topic | MATHEMATICS / Number Theory bisacsh Arithmetic groups Cohomology operations L-functions Number theory Shimura varieties |
topic_facet | MATHEMATICS / Number Theory Arithmetic groups Cohomology operations L-functions Number theory Shimura varieties |
url | https://doi.org/10.1515/9780691197937 |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT raghurama eisensteincohomologyforglsubnsubandthespecialvaluesofrankinselberglfunctions AT hardergunter eisensteincohomologyforglsubnsubandthespecialvaluesofrankinselberglfunctions |