Tales of Impossibility: The 2000-Year Quest to Solve the Mathematical Problems of Antiquity
A comprehensive look at four of the most famous problems in mathematicsTales of Impossibility recounts the intriguing story of the renowned problems of antiquity, four of the most famous and studied questions in the history of mathematics. First posed by the ancient Greeks, these compass and straigh...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2019]
|
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-Aug4 DE-898 DE-859 DE-860 DE-20 DE-706 DE-739 URL des Erstveröffentlichers |
Zusammenfassung: | A comprehensive look at four of the most famous problems in mathematicsTales of Impossibility recounts the intriguing story of the renowned problems of antiquity, four of the most famous and studied questions in the history of mathematics. First posed by the ancient Greeks, these compass and straightedge problems—squaring the circle, trisecting an angle, doubling the cube, and inscribing regular polygons in a circle—have served as ever-present muses for mathematicians for more than two millennia. David Richeson follows the trail of these problems to show that ultimately their proofs—demonstrating the impossibility of solving them using only a compass and straightedge—depended on and resulted in the growth of mathematics.Richeson investigates how celebrated luminaries, including Euclid, Archimedes, Viète, Descartes, Newton, and Gauss, labored to understand these problems and how many major mathematical discoveries were related to their explorations. Although the problems were based in geometry, their resolutions were not, and had to wait until the nineteenth century, when mathematicians had developed the theory of real and complex numbers, analytic geometry, algebra, and calculus. Pierre Wantzel, a little-known mathematician, and Ferdinand von Lindemann, through his work on pi, finally determined the problems were impossible to solve. Along the way, Richeson provides entertaining anecdotes connected to the problems, such as how the Indiana state legislature passed a bill setting an incorrect value for pi and how Leonardo da Vinci made elegant contributions in his own study of these problems.Taking readers from the classical period to the present, Tales of Impossibility chronicles how four unsolvable problems have captivated mathematical thinking for centuries |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 22. Okt 2019) |
Beschreibung: | 1 online resource (400 pages) 163 b/w illus. 5 tables |
ISBN: | 9780691194233 |
DOI: | 10.1515/9780691194233 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV046256882 | ||
003 | DE-604 | ||
005 | 20241113 | ||
007 | cr|uuu---uuuuu | ||
008 | 191115s2019 xx a||| o|||| 00||| eng d | ||
020 | |a 9780691194233 |9 978-0-691-19423-3 | ||
024 | 7 | |a 10.1515/9780691194233 |2 doi | |
035 | |a (ZDB-23-DGG)9780691194233 | ||
035 | |a (OCoLC)1128846742 | ||
035 | |a (DE-599)BVBBV046256882 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-1043 |a DE-20 |a DE-858 |a DE-898 |a DE-706 | ||
082 | 0 | |a 516.204 |2 23 | |
100 | 1 | |a Richeson, David S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Tales of Impossibility |b The 2000-Year Quest to Solve the Mathematical Problems of Antiquity |c David S. Richeson |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a 1 online resource (400 pages) |b 163 b/w illus. 5 tables | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 22. Okt 2019) | ||
520 | |a A comprehensive look at four of the most famous problems in mathematicsTales of Impossibility recounts the intriguing story of the renowned problems of antiquity, four of the most famous and studied questions in the history of mathematics. First posed by the ancient Greeks, these compass and straightedge problems—squaring the circle, trisecting an angle, doubling the cube, and inscribing regular polygons in a circle—have served as ever-present muses for mathematicians for more than two millennia. David Richeson follows the trail of these problems to show that ultimately their proofs—demonstrating the impossibility of solving them using only a compass and straightedge—depended on and resulted in the growth of mathematics.Richeson investigates how celebrated luminaries, including Euclid, Archimedes, Viète, Descartes, Newton, and Gauss, labored to understand these problems and how many major mathematical discoveries were related to their explorations. Although the problems were based in geometry, their resolutions were not, and had to wait until the nineteenth century, when mathematicians had developed the theory of real and complex numbers, analytic geometry, algebra, and calculus. Pierre Wantzel, a little-known mathematician, and Ferdinand von Lindemann, through his work on pi, finally determined the problems were impossible to solve. Along the way, Richeson provides entertaining anecdotes connected to the problems, such as how the Indiana state legislature passed a bill setting an incorrect value for pi and how Leonardo da Vinci made elegant contributions in his own study of these problems.Taking readers from the classical period to the present, Tales of Impossibility chronicles how four unsolvable problems have captivated mathematical thinking for centuries | ||
546 | |a In English | ||
650 | 7 | |a MATHEMATICS / History & Philosophy |2 bisacsh | |
650 | 4 | |a Geometry |x Famous problems | |
650 | 4 | |a Mathematics, Ancient | |
650 | 0 | 7 | |a Antike |0 (DE-588)4068754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Problem |0 (DE-588)4114530-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematisches Problem |0 (DE-588)4114530-6 |D s |
689 | 0 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | 2 | |a Antike |0 (DE-588)4068754-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691194233 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-DMA | ||
940 | 1 | |q ZDB-23-DMA19 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031634991 | |
966 | e | |u https://doi.org/10.1515/9780691194233?locatt=mode:legacy |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691194233?locatt=mode:legacy |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691194233?locatt=mode:legacy |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691194233?locatt=mode:legacy |l DE-Aug4 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691194233?locatt=mode:legacy |l DE-898 |p ZDB-23-DMA |q ZDB-23-DMA19 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691194233?locatt=mode:legacy |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691194233?locatt=mode:legacy |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691194233?locatt=mode:legacy |l DE-20 |p ZDB-23-DMA |q ZDB-23-DMA19 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691194233?locatt=mode:legacy |l DE-706 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691194233?locatt=mode:legacy |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1815619976601534464 |
---|---|
adam_text | |
any_adam_object | |
author | Richeson, David S. |
author_facet | Richeson, David S. |
author_role | aut |
author_sort | Richeson, David S. |
author_variant | d s r ds dsr |
building | Verbundindex |
bvnumber | BV046256882 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9780691194233 (OCoLC)1128846742 (DE-599)BVBBV046256882 |
dewey-full | 516.204 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.204 |
dewey-search | 516.204 |
dewey-sort | 3516.204 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9780691194233 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV046256882</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241113</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">191115s2019 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691194233</subfield><subfield code="9">978-0-691-19423-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691194233</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691194233</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1128846742</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046256882</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.204</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Richeson, David S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tales of Impossibility</subfield><subfield code="b">The 2000-Year Quest to Solve the Mathematical Problems of Antiquity</subfield><subfield code="c">David S. Richeson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (400 pages)</subfield><subfield code="b">163 b/w illus. 5 tables</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 22. Okt 2019)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A comprehensive look at four of the most famous problems in mathematicsTales of Impossibility recounts the intriguing story of the renowned problems of antiquity, four of the most famous and studied questions in the history of mathematics. First posed by the ancient Greeks, these compass and straightedge problems—squaring the circle, trisecting an angle, doubling the cube, and inscribing regular polygons in a circle—have served as ever-present muses for mathematicians for more than two millennia. David Richeson follows the trail of these problems to show that ultimately their proofs—demonstrating the impossibility of solving them using only a compass and straightedge—depended on and resulted in the growth of mathematics.Richeson investigates how celebrated luminaries, including Euclid, Archimedes, Viète, Descartes, Newton, and Gauss, labored to understand these problems and how many major mathematical discoveries were related to their explorations. Although the problems were based in geometry, their resolutions were not, and had to wait until the nineteenth century, when mathematicians had developed the theory of real and complex numbers, analytic geometry, algebra, and calculus. Pierre Wantzel, a little-known mathematician, and Ferdinand von Lindemann, through his work on pi, finally determined the problems were impossible to solve. Along the way, Richeson provides entertaining anecdotes connected to the problems, such as how the Indiana state legislature passed a bill setting an incorrect value for pi and how Leonardo da Vinci made elegant contributions in his own study of these problems.Taking readers from the classical period to the present, Tales of Impossibility chronicles how four unsolvable problems have captivated mathematical thinking for centuries</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / History & Philosophy</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield><subfield code="x">Famous problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, Ancient</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Antike</subfield><subfield code="0">(DE-588)4068754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Problem</subfield><subfield code="0">(DE-588)4114530-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematisches Problem</subfield><subfield code="0">(DE-588)4114530-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Antike</subfield><subfield code="0">(DE-588)4068754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691194233</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA19</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031634991</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691194233?locatt=mode:legacy</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691194233?locatt=mode:legacy</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691194233?locatt=mode:legacy</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691194233?locatt=mode:legacy</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691194233?locatt=mode:legacy</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691194233?locatt=mode:legacy</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691194233?locatt=mode:legacy</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691194233?locatt=mode:legacy</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691194233?locatt=mode:legacy</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691194233?locatt=mode:legacy</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046256882 |
illustrated | Illustrated |
indexdate | 2024-11-13T15:02:19Z |
institution | BVB |
isbn | 9780691194233 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031634991 |
oclc_num | 1128846742 |
open_access_boolean | |
owner | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-1043 DE-20 DE-858 DE-898 DE-BY-UBR DE-706 |
owner_facet | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-1043 DE-20 DE-858 DE-898 DE-BY-UBR DE-706 |
physical | 1 online resource (400 pages) 163 b/w illus. 5 tables |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DMA19 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA19 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Princeton University Press |
record_format | marc |
spelling | Richeson, David S. Verfasser aut Tales of Impossibility The 2000-Year Quest to Solve the Mathematical Problems of Antiquity David S. Richeson Princeton, NJ Princeton University Press [2019] © 2019 1 online resource (400 pages) 163 b/w illus. 5 tables txt rdacontent c rdamedia cr rdacarrier Description based on online resource; title from PDF title page (publisher's Web site, viewed 22. Okt 2019) A comprehensive look at four of the most famous problems in mathematicsTales of Impossibility recounts the intriguing story of the renowned problems of antiquity, four of the most famous and studied questions in the history of mathematics. First posed by the ancient Greeks, these compass and straightedge problems—squaring the circle, trisecting an angle, doubling the cube, and inscribing regular polygons in a circle—have served as ever-present muses for mathematicians for more than two millennia. David Richeson follows the trail of these problems to show that ultimately their proofs—demonstrating the impossibility of solving them using only a compass and straightedge—depended on and resulted in the growth of mathematics.Richeson investigates how celebrated luminaries, including Euclid, Archimedes, Viète, Descartes, Newton, and Gauss, labored to understand these problems and how many major mathematical discoveries were related to their explorations. Although the problems were based in geometry, their resolutions were not, and had to wait until the nineteenth century, when mathematicians had developed the theory of real and complex numbers, analytic geometry, algebra, and calculus. Pierre Wantzel, a little-known mathematician, and Ferdinand von Lindemann, through his work on pi, finally determined the problems were impossible to solve. Along the way, Richeson provides entertaining anecdotes connected to the problems, such as how the Indiana state legislature passed a bill setting an incorrect value for pi and how Leonardo da Vinci made elegant contributions in his own study of these problems.Taking readers from the classical period to the present, Tales of Impossibility chronicles how four unsolvable problems have captivated mathematical thinking for centuries In English MATHEMATICS / History & Philosophy bisacsh Geometry Famous problems Mathematics, Ancient Antike (DE-588)4068754-5 gnd rswk-swf Mathematisches Problem (DE-588)4114530-6 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Mathematisches Problem (DE-588)4114530-6 s Geometrie (DE-588)4020236-7 s Antike (DE-588)4068754-5 s 1\p DE-604 https://doi.org/10.1515/9780691194233 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Richeson, David S. Tales of Impossibility The 2000-Year Quest to Solve the Mathematical Problems of Antiquity MATHEMATICS / History & Philosophy bisacsh Geometry Famous problems Mathematics, Ancient Antike (DE-588)4068754-5 gnd Mathematisches Problem (DE-588)4114530-6 gnd Geometrie (DE-588)4020236-7 gnd |
subject_GND | (DE-588)4068754-5 (DE-588)4114530-6 (DE-588)4020236-7 |
title | Tales of Impossibility The 2000-Year Quest to Solve the Mathematical Problems of Antiquity |
title_auth | Tales of Impossibility The 2000-Year Quest to Solve the Mathematical Problems of Antiquity |
title_exact_search | Tales of Impossibility The 2000-Year Quest to Solve the Mathematical Problems of Antiquity |
title_full | Tales of Impossibility The 2000-Year Quest to Solve the Mathematical Problems of Antiquity David S. Richeson |
title_fullStr | Tales of Impossibility The 2000-Year Quest to Solve the Mathematical Problems of Antiquity David S. Richeson |
title_full_unstemmed | Tales of Impossibility The 2000-Year Quest to Solve the Mathematical Problems of Antiquity David S. Richeson |
title_short | Tales of Impossibility |
title_sort | tales of impossibility the 2000 year quest to solve the mathematical problems of antiquity |
title_sub | The 2000-Year Quest to Solve the Mathematical Problems of Antiquity |
topic | MATHEMATICS / History & Philosophy bisacsh Geometry Famous problems Mathematics, Ancient Antike (DE-588)4068754-5 gnd Mathematisches Problem (DE-588)4114530-6 gnd Geometrie (DE-588)4020236-7 gnd |
topic_facet | MATHEMATICS / History & Philosophy Geometry Famous problems Mathematics, Ancient Antike Mathematisches Problem Geometrie |
url | https://doi.org/10.1515/9780691194233 |
work_keys_str_mv | AT richesondavids talesofimpossibilitythe2000yearquesttosolvethemathematicalproblemsofantiquity |