Algebraic graph theory: morphisms, monoids and matrices
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2019]
|
Ausgabe: | 2nd edition |
Schriftenreihe: | De Gruyter studies in mathematics
41 |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FHR01 FKE01 FLA01 TUM01 UBR01 UBW01 UBY01 UPA01 Volltext |
Beschreibung: | 1 online resource (XVIII, 329 Seiten) |
ISBN: | 9783110617368 |
DOI: | 10.1515/9783110617368 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV046256604 | ||
003 | DE-604 | ||
005 | 20220419 | ||
007 | cr|uuu---uuuuu | ||
008 | 191115s2019 |||| o||u| ||||||eng d | ||
020 | |a 9783110617368 |9 978-3-11-061736-8 | ||
024 | 7 | |a 10.1515/9783110617368 |2 doi | |
035 | |a (ZDB-23-DGG)9783110617368 | ||
035 | |a (OCoLC)1128854903 | ||
035 | |a (DE-599)BVBBV046256604 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-91 |a DE-706 |a DE-898 |a DE-1043 |a DE-20 |a DE-858 |a DE-355 |a DE-83 | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a 05C50 |2 msc | ||
100 | 1 | |a Knauer, Ulrich |d 1942- |0 (DE-588)14404787X |4 aut | |
245 | 1 | 0 | |a Algebraic graph theory |b morphisms, monoids and matrices |c Ulrich Knauer and Kolja Knauer |
250 | |a 2nd edition | ||
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a 1 online resource (XVIII, 329 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter studies in mathematics |v 41 | |
546 | |a In English | ||
650 | 4 | |a Algebraic | |
650 | 4 | |a Graph Theory | |
650 | 4 | |a Matrices | |
650 | 4 | |a Monoids | |
650 | 4 | |a Morphisms | |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | 1 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Knauer, Kolja |d 1980- |0 (DE-588)1197265635 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783110616125 |
830 | 0 | |a De Gruyter studies in mathematics |v 41 |w (DE-604)BV044966417 |9 41 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110617368 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-GSM |a ZDB-23-DGG |a ZDB-23-DMA | ||
940 | 1 | |q ZDB-23-DMA19 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-031634713 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1515/9783110617368 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110617368 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110617368 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110617368 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110617368 |l FHR01 |p ZDB-23-DMA |q ZDB-23-DMA19 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110617368 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110617368 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110617368 |l TUM01 |p ZDB-23-DMA |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110617368 |l UBR01 |p ZDB-23-DGG |q UBR_Pick&Choose 2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110617368 |l UBW01 |p ZDB-23-DMA |q ZDB-23-DMA19 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110617368 |l UBY01 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110617368 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180687545171968 |
---|---|
any_adam_object | |
author | Knauer, Ulrich 1942- Knauer, Kolja 1980- |
author_GND | (DE-588)14404787X (DE-588)1197265635 |
author_facet | Knauer, Ulrich 1942- Knauer, Kolja 1980- |
author_role | aut aut |
author_sort | Knauer, Ulrich 1942- |
author_variant | u k uk k k kk |
building | Verbundindex |
bvnumber | BV046256604 |
classification_rvk | SK 890 |
collection | ZDB-23-GSM ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9783110617368 (OCoLC)1128854903 (DE-599)BVBBV046256604 |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110617368 |
edition | 2nd edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03338nmm a2200709 cb4500</leader><controlfield tag="001">BV046256604</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220419 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">191115s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110617368</subfield><subfield code="9">978-3-11-061736-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110617368</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110617368</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1128854903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046256604</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">05C50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knauer, Ulrich</subfield><subfield code="d">1942-</subfield><subfield code="0">(DE-588)14404787X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic graph theory</subfield><subfield code="b">morphisms, monoids and matrices</subfield><subfield code="c">Ulrich Knauer and Kolja Knauer</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (XVIII, 329 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">41</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monoids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morphisms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Knauer, Kolja</subfield><subfield code="d">1980-</subfield><subfield code="0">(DE-588)1197265635</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783110616125</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">41</subfield><subfield code="w">(DE-604)BV044966417</subfield><subfield code="9">41</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110617368</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-GSM</subfield><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA19</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031634713</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110617368</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110617368</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110617368</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110617368</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110617368</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110617368</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110617368</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110617368</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110617368</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UBR_Pick&Choose 2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110617368</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110617368</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110617368</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV046256604 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:39:43Z |
institution | BVB |
isbn | 9783110617368 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031634713 |
oclc_num | 1128854903 |
open_access_boolean | |
owner | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-706 DE-898 DE-BY-UBR DE-1043 DE-20 DE-858 DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-706 DE-898 DE-BY-UBR DE-1043 DE-20 DE-858 DE-355 DE-BY-UBR DE-83 |
physical | 1 online resource (XVIII, 329 Seiten) |
psigel | ZDB-23-GSM ZDB-23-DGG ZDB-23-DMA ZDB-23-DMA19 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA19 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf ZDB-23-DGG UBR_Pick&Choose 2022 ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter studies in mathematics |
series2 | De Gruyter studies in mathematics |
spelling | Knauer, Ulrich 1942- (DE-588)14404787X aut Algebraic graph theory morphisms, monoids and matrices Ulrich Knauer and Kolja Knauer 2nd edition Berlin ; Boston De Gruyter [2019] © 2019 1 online resource (XVIII, 329 Seiten) txt rdacontent c rdamedia cr rdacarrier De Gruyter studies in mathematics 41 In English Algebraic Graph Theory Matrices Monoids Morphisms Graphentheorie (DE-588)4113782-6 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Graphentheorie (DE-588)4113782-6 s Algebra (DE-588)4001156-2 s DE-604 Knauer, Kolja 1980- (DE-588)1197265635 aut Erscheint auch als Druck-Ausgabe 9783110616125 De Gruyter studies in mathematics 41 (DE-604)BV044966417 41 https://doi.org/10.1515/9783110617368 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Knauer, Ulrich 1942- Knauer, Kolja 1980- Algebraic graph theory morphisms, monoids and matrices De Gruyter studies in mathematics Algebraic Graph Theory Matrices Monoids Morphisms Graphentheorie (DE-588)4113782-6 gnd Algebra (DE-588)4001156-2 gnd |
subject_GND | (DE-588)4113782-6 (DE-588)4001156-2 (DE-588)4123623-3 |
title | Algebraic graph theory morphisms, monoids and matrices |
title_auth | Algebraic graph theory morphisms, monoids and matrices |
title_exact_search | Algebraic graph theory morphisms, monoids and matrices |
title_full | Algebraic graph theory morphisms, monoids and matrices Ulrich Knauer and Kolja Knauer |
title_fullStr | Algebraic graph theory morphisms, monoids and matrices Ulrich Knauer and Kolja Knauer |
title_full_unstemmed | Algebraic graph theory morphisms, monoids and matrices Ulrich Knauer and Kolja Knauer |
title_short | Algebraic graph theory |
title_sort | algebraic graph theory morphisms monoids and matrices |
title_sub | morphisms, monoids and matrices |
topic | Algebraic Graph Theory Matrices Monoids Morphisms Graphentheorie (DE-588)4113782-6 gnd Algebra (DE-588)4001156-2 gnd |
topic_facet | Algebraic Graph Theory Matrices Monoids Morphisms Graphentheorie Algebra Lehrbuch |
url | https://doi.org/10.1515/9783110617368 |
volume_link | (DE-604)BV044966417 |
work_keys_str_mv | AT knauerulrich algebraicgraphtheorymorphismsmonoidsandmatrices AT knauerkolja algebraicgraphtheorymorphismsmonoidsandmatrices |