Attraction in numerical minimization: iteration mappings, attractors, and basins of attraction
Numerical minimization of an objective function is analyzed in this book to understand solution algorithms for optimization problems. Multiset-mappings are introduced to engineer numerical minimization as a repeated application of an iteration mapping. Ideas from numerical variational analysis are e...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
[Cham]
Springer
[2018]
|
Schriftenreihe: | Springer briefs in optimization
|
Schlagworte: | |
Zusammenfassung: | Numerical minimization of an objective function is analyzed in this book to understand solution algorithms for optimization problems. Multiset-mappings are introduced to engineer numerical minimization as a repeated application of an iteration mapping. Ideas from numerical variational analysis are extended to define and explore notions of continuity and differentiability of multiset-mappings, and prove a fixed-point theorem for iteration mappings. Concepts from dynamical systems are utilized to develop notions of basin size and basin entropy. Simulations to estimate basins of attraction, to measure and classify basin size, and to compute basin are included to shed new light on convergence behavior in numerical minimization. Graduate students, researchers, and practitioners in optimization and mathematics who work theoretically to develop solution algorithms will find this book a useful resource |
Beschreibung: | Includes bibliographical references |
Beschreibung: | xii, 78 Seiten Illustrationen 24 cm |
ISBN: | 9783030040482 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046254769 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 191114s2018 sz a||| |||| 00||| eng d | ||
020 | |a 9783030040482 |9 978-3-030-04048-2 | ||
035 | |a (OCoLC)1128855975 | ||
035 | |a (DE-599)BSZ517669935 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-83 | ||
050 | 0 | |a QA276.4 | |
082 | 0 | |a 519.5 | |
084 | |a 37D45 |2 msc | ||
084 | |a 37Mxx |2 msc | ||
100 | 1 | |a Levy, Adam |e Verfasser |4 aut | |
245 | 1 | 0 | |a Attraction in numerical minimization |b iteration mappings, attractors, and basins of attraction |c Adam B. Levy |
264 | 1 | |a [Cham] |b Springer |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a xii, 78 Seiten |b Illustrationen |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer briefs in optimization | |
500 | |a Includes bibliographical references | ||
520 | 3 | |a Numerical minimization of an objective function is analyzed in this book to understand solution algorithms for optimization problems. Multiset-mappings are introduced to engineer numerical minimization as a repeated application of an iteration mapping. Ideas from numerical variational analysis are extended to define and explore notions of continuity and differentiability of multiset-mappings, and prove a fixed-point theorem for iteration mappings. Concepts from dynamical systems are utilized to develop notions of basin size and basin entropy. Simulations to estimate basins of attraction, to measure and classify basin size, and to compute basin are included to shed new light on convergence behavior in numerical minimization. Graduate students, researchers, and practitioners in optimization and mathematics who work theoretically to develop solution algorithms will find this book a useful resource | |
653 | 0 | |a Mathematical statistics / Data processing | |
653 | 0 | |a Numerical analysis | |
653 | 0 | |a Attractors (Mathematics) | |
653 | 0 | |a Mathematical statistics / Data processing | |
653 | 0 | |a Numerical analysis | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.1007/978-3-030-04049-9 |
776 | 0 | |z 9783030040499 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |a Levy, Adam B. |t Attraction in Numerical Minimization |d Cham : Springer International Publishing, 2018 |h Online-Ressource (XII, 78 p. 49 illus. in color, online resource) |z 9783030040499 |
999 | |a oai:aleph.bib-bvb.de:BVB01-031632908 |
Datensatz im Suchindex
_version_ | 1804180684211748864 |
---|---|
any_adam_object | |
author | Levy, Adam |
author_facet | Levy, Adam |
author_role | aut |
author_sort | Levy, Adam |
author_variant | a l al |
building | Verbundindex |
bvnumber | BV046254769 |
callnumber-first | Q - Science |
callnumber-label | QA276 |
callnumber-raw | QA276.4 |
callnumber-search | QA276.4 |
callnumber-sort | QA 3276.4 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)1128855975 (DE-599)BSZ517669935 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02511nam a2200457 c 4500</leader><controlfield tag="001">BV046254769</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">191114s2018 sz a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030040482</subfield><subfield code="9">978-3-030-04048-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1128855975</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ517669935</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA276.4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">37D45</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">37Mxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Levy, Adam</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Attraction in numerical minimization</subfield><subfield code="b">iteration mappings, attractors, and basins of attraction</subfield><subfield code="c">Adam B. Levy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Cham]</subfield><subfield code="b">Springer</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 78 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer briefs in optimization</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Numerical minimization of an objective function is analyzed in this book to understand solution algorithms for optimization problems. Multiset-mappings are introduced to engineer numerical minimization as a repeated application of an iteration mapping. Ideas from numerical variational analysis are extended to define and explore notions of continuity and differentiability of multiset-mappings, and prove a fixed-point theorem for iteration mappings. Concepts from dynamical systems are utilized to develop notions of basin size and basin entropy. Simulations to estimate basins of attraction, to measure and classify basin size, and to compute basin are included to shed new light on convergence behavior in numerical minimization. Graduate students, researchers, and practitioners in optimization and mathematics who work theoretically to develop solution algorithms will find this book a useful resource</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematical statistics / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Attractors (Mathematics)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematical statistics / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.1007/978-3-030-04049-9</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9783030040499</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="a">Levy, Adam B.</subfield><subfield code="t">Attraction in Numerical Minimization</subfield><subfield code="d">Cham : Springer International Publishing, 2018</subfield><subfield code="h">Online-Ressource (XII, 78 p. 49 illus. in color, online resource)</subfield><subfield code="z">9783030040499</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031632908</subfield></datafield></record></collection> |
id | DE-604.BV046254769 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:39:40Z |
institution | BVB |
isbn | 9783030040482 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031632908 |
oclc_num | 1128855975 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | xii, 78 Seiten Illustrationen 24 cm |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Springer |
record_format | marc |
series2 | Springer briefs in optimization |
spelling | Levy, Adam Verfasser aut Attraction in numerical minimization iteration mappings, attractors, and basins of attraction Adam B. Levy [Cham] Springer [2018] © 2018 xii, 78 Seiten Illustrationen 24 cm txt rdacontent n rdamedia nc rdacarrier Springer briefs in optimization Includes bibliographical references Numerical minimization of an objective function is analyzed in this book to understand solution algorithms for optimization problems. Multiset-mappings are introduced to engineer numerical minimization as a repeated application of an iteration mapping. Ideas from numerical variational analysis are extended to define and explore notions of continuity and differentiability of multiset-mappings, and prove a fixed-point theorem for iteration mappings. Concepts from dynamical systems are utilized to develop notions of basin size and basin entropy. Simulations to estimate basins of attraction, to measure and classify basin size, and to compute basin are included to shed new light on convergence behavior in numerical minimization. Graduate students, researchers, and practitioners in optimization and mathematics who work theoretically to develop solution algorithms will find this book a useful resource Mathematical statistics / Data processing Numerical analysis Attractors (Mathematics) Erscheint auch als Online-Ausgabe 10.1007/978-3-030-04049-9 9783030040499 Erscheint auch als Online-Ausgabe Levy, Adam B. Attraction in Numerical Minimization Cham : Springer International Publishing, 2018 Online-Ressource (XII, 78 p. 49 illus. in color, online resource) 9783030040499 |
spellingShingle | Levy, Adam Attraction in numerical minimization iteration mappings, attractors, and basins of attraction |
title | Attraction in numerical minimization iteration mappings, attractors, and basins of attraction |
title_auth | Attraction in numerical minimization iteration mappings, attractors, and basins of attraction |
title_exact_search | Attraction in numerical minimization iteration mappings, attractors, and basins of attraction |
title_full | Attraction in numerical minimization iteration mappings, attractors, and basins of attraction Adam B. Levy |
title_fullStr | Attraction in numerical minimization iteration mappings, attractors, and basins of attraction Adam B. Levy |
title_full_unstemmed | Attraction in numerical minimization iteration mappings, attractors, and basins of attraction Adam B. Levy |
title_short | Attraction in numerical minimization |
title_sort | attraction in numerical minimization iteration mappings attractors and basins of attraction |
title_sub | iteration mappings, attractors, and basins of attraction |
work_keys_str_mv | AT levyadam attractioninnumericalminimizationiterationmappingsattractorsandbasinsofattraction |