Deep Learning mit TensorFlow, Keras und TensorFlow.js:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Bonn
Rheinwerk Verlag
2019
|
Ausgabe: | 1. Auflage, 1., korrigierter Nachdruck |
Schriftenreihe: | Rheinwerk Computing
|
Schlagworte: | |
Online-Zugang: | Inhaltstext |
Beschreibung: | Auf dem Cover: Für KI und Data Science ; Von der Aufbereitung der Daten bis zur Visualisierung ; Mit Python, HTML5 und JavaScript Deep Learning entdecken ; Mit ml5.js TensorBoard, Matplotlib, Estimators, Tf.keras, Eager Execution u.v.m. |
Beschreibung: | 423 Seiten Illustrationen, Diagramme 24 cm x 16.8 cm |
ISBN: | 9783836265096 3836265095 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV046222376 | ||
003 | DE-604 | ||
005 | 20191217 | ||
007 | t | ||
008 | 191029s2019 gw a||| |||| 00||| ger d | ||
020 | |a 9783836265096 |c kart. : EUR 39.90 (DE), EUR 41.10 (AT), CHF 49.90 (freier Preis) |9 978-3-8362-6509-6 | ||
020 | |a 3836265095 |9 3-8362-6509-5 | ||
024 | 3 | |a 9783836265096 | |
028 | 5 | 2 | |a Bestellnummer: 459/06509 |
035 | |a (OCoLC)1120100909 | ||
035 | |a (DE-599)BVBBV046222376 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a ger | |
044 | |a gw |c XA-DE-NW | ||
049 | |a DE-634 |a DE-1046 |a DE-384 |a DE-B768 | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
084 | |a DAT 708f |2 stub | ||
084 | |a 004 |2 sdnb | ||
084 | |a DAT 316f |2 stub | ||
100 | 1 | |a Deru, Matthieu |e Verfasser |0 (DE-588)1186996420 |4 aut | |
245 | 1 | 0 | |a Deep Learning mit TensorFlow, Keras und TensorFlow.js |c Matthieu Deru, Alassane Ndiaye |
250 | |a 1. Auflage, 1., korrigierter Nachdruck | ||
264 | 1 | |a Bonn |b Rheinwerk Verlag |c 2019 | |
300 | |a 423 Seiten |b Illustrationen, Diagramme |c 24 cm x 16.8 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Rheinwerk Computing | |
500 | |a Auf dem Cover: Für KI und Data Science ; Von der Aufbereitung der Daten bis zur Visualisierung ; Mit Python, HTML5 und JavaScript Deep Learning entdecken ; Mit ml5.js TensorBoard, Matplotlib, Estimators, Tf.keras, Eager Execution u.v.m. | ||
650 | 0 | 7 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a JavaScript |0 (DE-588)4420180-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a TensorFlow |0 (DE-588)1153577011 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a HTML 5.0 |0 (DE-588)7704810-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
653 | |a Hardback | ||
653 | |a COM000000 | ||
653 | |a U | ||
653 | |a Deep Learning | ||
653 | |a TensorFlow.js | ||
653 | |a TensorFlow | ||
653 | |a Keras | ||
653 | |a Neuronale Netze | ||
653 | |a Deep Neural Networks | ||
653 | |a Machine Learning | ||
653 | |a Deep-Learning-Netze | ||
653 | |a 31102 | ||
653 | |a COM000000 | ||
653 | |a U | ||
653 | |a 1633: Hardcover, Softcover / Informatik, EDV/Programmiersprachen | ||
689 | 0 | 0 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | 1 | |a TensorFlow |0 (DE-588)1153577011 |D s |
689 | 0 | 2 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 1 | 1 | |a HTML 5.0 |0 (DE-588)7704810-6 |D s |
689 | 1 | 2 | |a JavaScript |0 (DE-588)4420180-1 |D s |
689 | 1 | 3 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Ndiaye, Alassane |e Verfasser |0 (DE-588)1187002445 |4 aut | |
710 | 2 | |a Galileo Press |0 (DE-588)1065964404 |4 pbl | |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=9aae0cc1396444598165b2a45f5a4789&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031601047 |
Datensatz im Suchindex
_version_ | 1811259930106134528 |
---|---|
adam_text | |
any_adam_object | |
author | Deru, Matthieu Ndiaye, Alassane |
author_GND | (DE-588)1186996420 (DE-588)1187002445 |
author_facet | Deru, Matthieu Ndiaye, Alassane |
author_role | aut aut |
author_sort | Deru, Matthieu |
author_variant | m d md a n an |
building | Verbundindex |
bvnumber | BV046222376 |
classification_rvk | ST 250 ST 300 ST 301 ST 302 |
classification_tum | DAT 708f DAT 316f |
ctrlnum | (OCoLC)1120100909 (DE-599)BVBBV046222376 |
discipline | Informatik |
edition | 1. Auflage, 1., korrigierter Nachdruck |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008c 4500</leader><controlfield tag="001">BV046222376</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191217</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">191029s2019 gw a||| |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783836265096</subfield><subfield code="c">kart. : EUR 39.90 (DE), EUR 41.10 (AT), CHF 49.90 (freier Preis)</subfield><subfield code="9">978-3-8362-6509-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3836265095</subfield><subfield code="9">3-8362-6509-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783836265096</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 459/06509</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1120100909</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046222376</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-NW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-B768</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 316f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deru, Matthieu</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1186996420</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep Learning mit TensorFlow, Keras und TensorFlow.js</subfield><subfield code="c">Matthieu Deru, Alassane Ndiaye</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. Auflage, 1., korrigierter Nachdruck</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bonn</subfield><subfield code="b">Rheinwerk Verlag</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">423 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm x 16.8 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Rheinwerk Computing</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auf dem Cover: Für KI und Data Science ; Von der Aufbereitung der Daten bis zur Visualisierung ; Mit Python, HTML5 und JavaScript Deep Learning entdecken ; Mit ml5.js TensorBoard, Matplotlib, Estimators, Tf.keras, Eager Execution u.v.m.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">JavaScript</subfield><subfield code="0">(DE-588)4420180-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">TensorFlow</subfield><subfield code="0">(DE-588)1153577011</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">HTML 5.0</subfield><subfield code="0">(DE-588)7704810-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardback</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">COM000000</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">U</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Deep Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">TensorFlow.js</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">TensorFlow</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Keras</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Neuronale Netze</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Deep Neural Networks</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Deep-Learning-Netze</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">31102</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">COM000000</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">U</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">1633: Hardcover, Softcover / Informatik, EDV/Programmiersprachen</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">TensorFlow</subfield><subfield code="0">(DE-588)1153577011</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">HTML 5.0</subfield><subfield code="0">(DE-588)7704810-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">JavaScript</subfield><subfield code="0">(DE-588)4420180-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ndiaye, Alassane</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1187002445</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Galileo Press</subfield><subfield code="0">(DE-588)1065964404</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=9aae0cc1396444598165b2a45f5a4789&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031601047</subfield></datafield></record></collection> |
id | DE-604.BV046222376 |
illustrated | Illustrated |
indexdate | 2024-09-26T12:01:14Z |
institution | BVB |
institution_GND | (DE-588)1065964404 |
isbn | 9783836265096 3836265095 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031601047 |
oclc_num | 1120100909 |
open_access_boolean | |
owner | DE-634 DE-1046 DE-384 DE-B768 |
owner_facet | DE-634 DE-1046 DE-384 DE-B768 |
physical | 423 Seiten Illustrationen, Diagramme 24 cm x 16.8 cm |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Rheinwerk Verlag |
record_format | marc |
series2 | Rheinwerk Computing |
spelling | Deru, Matthieu Verfasser (DE-588)1186996420 aut Deep Learning mit TensorFlow, Keras und TensorFlow.js Matthieu Deru, Alassane Ndiaye 1. Auflage, 1., korrigierter Nachdruck Bonn Rheinwerk Verlag 2019 423 Seiten Illustrationen, Diagramme 24 cm x 16.8 cm txt rdacontent n rdamedia nc rdacarrier Rheinwerk Computing Auf dem Cover: Für KI und Data Science ; Von der Aufbereitung der Daten bis zur Visualisierung ; Mit Python, HTML5 und JavaScript Deep Learning entdecken ; Mit ml5.js TensorBoard, Matplotlib, Estimators, Tf.keras, Eager Execution u.v.m. Keras Framework, Informatik (DE-588)1160521077 gnd rswk-swf JavaScript (DE-588)4420180-1 gnd rswk-swf Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf TensorFlow (DE-588)1153577011 gnd rswk-swf HTML 5.0 (DE-588)7704810-6 gnd rswk-swf Deep learning (DE-588)1135597375 gnd rswk-swf Hardback COM000000 U Deep Learning TensorFlow.js TensorFlow Keras Neuronale Netze Deep Neural Networks Machine Learning Deep-Learning-Netze 31102 1633: Hardcover, Softcover / Informatik, EDV/Programmiersprachen Deep learning (DE-588)1135597375 s TensorFlow (DE-588)1153577011 s Keras Framework, Informatik (DE-588)1160521077 s DE-604 Python Programmiersprache (DE-588)4434275-5 s HTML 5.0 (DE-588)7704810-6 s JavaScript (DE-588)4420180-1 s Ndiaye, Alassane Verfasser (DE-588)1187002445 aut Galileo Press (DE-588)1065964404 pbl X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=9aae0cc1396444598165b2a45f5a4789&prov=M&dok_var=1&dok_ext=htm Inhaltstext |
spellingShingle | Deru, Matthieu Ndiaye, Alassane Deep Learning mit TensorFlow, Keras und TensorFlow.js Keras Framework, Informatik (DE-588)1160521077 gnd JavaScript (DE-588)4420180-1 gnd Python Programmiersprache (DE-588)4434275-5 gnd TensorFlow (DE-588)1153577011 gnd HTML 5.0 (DE-588)7704810-6 gnd Deep learning (DE-588)1135597375 gnd |
subject_GND | (DE-588)1160521077 (DE-588)4420180-1 (DE-588)4434275-5 (DE-588)1153577011 (DE-588)7704810-6 (DE-588)1135597375 |
title | Deep Learning mit TensorFlow, Keras und TensorFlow.js |
title_auth | Deep Learning mit TensorFlow, Keras und TensorFlow.js |
title_exact_search | Deep Learning mit TensorFlow, Keras und TensorFlow.js |
title_full | Deep Learning mit TensorFlow, Keras und TensorFlow.js Matthieu Deru, Alassane Ndiaye |
title_fullStr | Deep Learning mit TensorFlow, Keras und TensorFlow.js Matthieu Deru, Alassane Ndiaye |
title_full_unstemmed | Deep Learning mit TensorFlow, Keras und TensorFlow.js Matthieu Deru, Alassane Ndiaye |
title_short | Deep Learning mit TensorFlow, Keras und TensorFlow.js |
title_sort | deep learning mit tensorflow keras und tensorflow js |
topic | Keras Framework, Informatik (DE-588)1160521077 gnd JavaScript (DE-588)4420180-1 gnd Python Programmiersprache (DE-588)4434275-5 gnd TensorFlow (DE-588)1153577011 gnd HTML 5.0 (DE-588)7704810-6 gnd Deep learning (DE-588)1135597375 gnd |
topic_facet | Keras Framework, Informatik JavaScript Python Programmiersprache TensorFlow HTML 5.0 Deep learning |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=9aae0cc1396444598165b2a45f5a4789&prov=M&dok_var=1&dok_ext=htm |
work_keys_str_mv | AT derumatthieu deeplearningmittensorflowkerasundtensorflowjs AT ndiayealassane deeplearningmittensorflowkerasundtensorflowjs AT galileopress deeplearningmittensorflowkerasundtensorflowjs |