The master equation and the convergence problem in mean field games:
This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While originating in economics, this theory now has applications in areas as di...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton ; NJ
Princeton University Press
[2019]
|
Schriftenreihe: | Annals of mathematics studies
Number 201 |
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-Aug4 DE-898 DE-859 DE-860 DE-91 DE-20 DE-706 DE-739 Volltext |
Zusammenfassung: | This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While originating in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity.Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players, as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit.This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics |
Beschreibung: | 1 Online-Ressource (X, 212 Seiten) |
ISBN: | 9780691193717 |
DOI: | 10.1515/9780691193717 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV046211656 | ||
003 | DE-604 | ||
005 | 20240917 | ||
007 | cr|uuu---uuuuu | ||
008 | 191023s2019 |||| o||u| ||||||eng d | ||
020 | |a 9780691193717 |9 978-0-691-19371-7 | ||
024 | 7 | |a 10.1515/9780691193717 |2 doi | |
035 | |a (ZDB-23-DGG)9780691193717 | ||
035 | |a (OCoLC)1125186345 | ||
035 | |a (DE-599)BVBBV046211656 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-859 |a DE-Aug4 |a DE-860 |a DE-739 |a DE-1043 |a DE-91 |a DE-20 |a DE-858 |a DE-83 |a DE-706 |a DE-898 | ||
082 | 0 | |a 519.3 |2 23 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 860 |0 (DE-625)143264: |2 rvk | ||
084 | |a 91A16 |2 msc | ||
084 | |a 91A06 |2 msc | ||
100 | 1 | |a Cardaliaguet, Pierre |0 (DE-588)1026854687 |4 aut | |
245 | 1 | 0 | |a The master equation and the convergence problem in mean field games |c Pierre Cardaliaguet ; Pierre-Louis Lions ; Jean-Michel Lasry ; François Delarue |
264 | 1 | |a Princeton ; NJ |b Princeton University Press |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a 1 Online-Ressource (X, 212 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies |v Number 201 | |
520 | |a This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While originating in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity.Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players, as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit.This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics | ||
546 | |a In English | ||
650 | 7 | |a MATHEMATICS / Game Theory |2 bisacsh | |
650 | 4 | |a Differential equations | |
650 | 4 | |a Game theory | |
650 | 4 | |a Mean field theory | |
700 | 1 | |a Delarue, François |d 1976- |0 (DE-588)1156345413 |4 aut | |
700 | 1 | |a Lasry, Jean-Michel |0 (DE-588)171091930 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-19071-6 |
830 | 0 | |a Annals of mathematics studies |v Number 201 |w (DE-604)BV040389493 |9 201 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691193717 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA |a ZDB-23-PST | ||
940 | 1 | |q ZDB-23-DMA19 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031590543 | |
966 | e | |u https://doi.org/10.1515/9780691193717?locatt=mode:legacy |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691193717?locatt=mode:legacy |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691193717?locatt=mode:legacy |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691193717?locatt=mode:legacy |l DE-Aug4 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691193717?locatt=mode:legacy |l DE-898 |p ZDB-23-DMA |q ZDB-23-DMA19 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691193717?locatt=mode:legacy |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691193717?locatt=mode:legacy |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691193717?locatt=mode:legacy |l DE-91 |p ZDB-23-DMA |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691193717?locatt=mode:legacy |l DE-20 |p ZDB-23-DMA |q ZDB-23-DMA19 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691193717?locatt=mode:legacy |l DE-706 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691193717?locatt=mode:legacy |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1810467136584286209 |
---|---|
adam_text | |
any_adam_object | |
author | Cardaliaguet, Pierre Delarue, François 1976- Lasry, Jean-Michel |
author_GND | (DE-588)1026854687 (DE-588)1156345413 (DE-588)171091930 |
author_facet | Cardaliaguet, Pierre Delarue, François 1976- Lasry, Jean-Michel |
author_role | aut aut aut |
author_sort | Cardaliaguet, Pierre |
author_variant | p c pc f d fd j m l jml |
building | Verbundindex |
bvnumber | BV046211656 |
classification_rvk | SI 830 SK 860 |
collection | ZDB-23-DGG ZDB-23-DMA ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9780691193717 (OCoLC)1125186345 (DE-599)BVBBV046211656 |
dewey-full | 519.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.3 |
dewey-search | 519.3 |
dewey-sort | 3519.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9780691193717 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 cb4500</leader><controlfield tag="001">BV046211656</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240917</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">191023s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691193717</subfield><subfield code="9">978-0-691-19371-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691193717</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691193717</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1125186345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046211656</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 860</subfield><subfield code="0">(DE-625)143264:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">91A16</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">91A06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cardaliaguet, Pierre</subfield><subfield code="0">(DE-588)1026854687</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The master equation and the convergence problem in mean field games</subfield><subfield code="c">Pierre Cardaliaguet ; Pierre-Louis Lions ; Jean-Michel Lasry ; François Delarue</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton ; NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 212 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 201</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While originating in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity.Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players, as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit.This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Game Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Game theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mean field theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Delarue, François</subfield><subfield code="d">1976-</subfield><subfield code="0">(DE-588)1156345413</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lasry, Jean-Michel</subfield><subfield code="0">(DE-588)171091930</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-19071-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 201</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">201</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691193717</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA19</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031590543</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691193717?locatt=mode:legacy</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691193717?locatt=mode:legacy</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691193717?locatt=mode:legacy</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691193717?locatt=mode:legacy</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691193717?locatt=mode:legacy</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691193717?locatt=mode:legacy</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691193717?locatt=mode:legacy</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691193717?locatt=mode:legacy</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691193717?locatt=mode:legacy</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691193717?locatt=mode:legacy</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691193717?locatt=mode:legacy</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046211656 |
illustrated | Not Illustrated |
indexdate | 2024-09-17T18:00:08Z |
institution | BVB |
isbn | 9780691193717 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031590543 |
oclc_num | 1125186345 |
open_access_boolean | |
owner | DE-1046 DE-859 DE-Aug4 DE-860 DE-739 DE-1043 DE-91 DE-BY-TUM DE-20 DE-858 DE-83 DE-706 DE-898 DE-BY-UBR |
owner_facet | DE-1046 DE-859 DE-Aug4 DE-860 DE-739 DE-1043 DE-91 DE-BY-TUM DE-20 DE-858 DE-83 DE-706 DE-898 DE-BY-UBR |
physical | 1 Online-Ressource (X, 212 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-PST ZDB-23-DMA19 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA19 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of mathematics studies |
series2 | Annals of mathematics studies |
spelling | Cardaliaguet, Pierre (DE-588)1026854687 aut The master equation and the convergence problem in mean field games Pierre Cardaliaguet ; Pierre-Louis Lions ; Jean-Michel Lasry ; François Delarue Princeton ; NJ Princeton University Press [2019] © 2019 1 Online-Ressource (X, 212 Seiten) txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies Number 201 This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While originating in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity.Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players, as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit.This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics In English MATHEMATICS / Game Theory bisacsh Differential equations Game theory Mean field theory Delarue, François 1976- (DE-588)1156345413 aut Lasry, Jean-Michel (DE-588)171091930 aut Erscheint auch als Druck-Ausgabe 978-0-691-19071-6 Annals of mathematics studies Number 201 (DE-604)BV040389493 201 https://doi.org/10.1515/9780691193717 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Cardaliaguet, Pierre Delarue, François 1976- Lasry, Jean-Michel The master equation and the convergence problem in mean field games Annals of mathematics studies MATHEMATICS / Game Theory bisacsh Differential equations Game theory Mean field theory |
title | The master equation and the convergence problem in mean field games |
title_auth | The master equation and the convergence problem in mean field games |
title_exact_search | The master equation and the convergence problem in mean field games |
title_full | The master equation and the convergence problem in mean field games Pierre Cardaliaguet ; Pierre-Louis Lions ; Jean-Michel Lasry ; François Delarue |
title_fullStr | The master equation and the convergence problem in mean field games Pierre Cardaliaguet ; Pierre-Louis Lions ; Jean-Michel Lasry ; François Delarue |
title_full_unstemmed | The master equation and the convergence problem in mean field games Pierre Cardaliaguet ; Pierre-Louis Lions ; Jean-Michel Lasry ; François Delarue |
title_short | The master equation and the convergence problem in mean field games |
title_sort | the master equation and the convergence problem in mean field games |
topic | MATHEMATICS / Game Theory bisacsh Differential equations Game theory Mean field theory |
topic_facet | MATHEMATICS / Game Theory Differential equations Game theory Mean field theory |
url | https://doi.org/10.1515/9780691193717 |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT cardaliaguetpierre themasterequationandtheconvergenceprobleminmeanfieldgames AT delaruefrancois themasterequationandtheconvergenceprobleminmeanfieldgames AT lasryjeanmichel themasterequationandtheconvergenceprobleminmeanfieldgames |