Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23:
Lattice path combinatorics has developed greatly as a branch of probability studies recently, and the need for new books on the subject is obvious. The present monograph, by one who has made significant contributions to combinatorics and its applications to probability and statistics, will be useful...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Toronto
University of Toronto Press
[2019]
|
Schriftenreihe: | Heritage
|
Schlagworte: | |
Online-Zugang: | FAW01 FHA01 FKE01 FLA01 UPA01 FAB01 FCO01 Volltext |
Zusammenfassung: | Lattice path combinatorics has developed greatly as a branch of probability studies recently, and the need for new books on the subject is obvious. The present monograph, by one who has made significant contributions to combinatorics and its applications to probability and statistics, will be useful to research workers, teachers, professional statisticians, and advanced students alike. It treats several recent results and it offers a powerful new tool for studying many problems in mathematical statistics. The emphasis in the five chapters is on 'dominance.' From a consideration of exceedances in the lattice path problem, the text goes on to provide solutions to tests of hypotheses and simple sampling plans, displaying the usefulness of Young chains in the enumeration of the latter. The fourth chapter, on knock-out tournaments, represents one approach to paired comparisons quite close in spirit to dominance and lattice path combinatorics, and the final chapter considers the advantages of using combinatorial methods in statistical problems (including the Frame-Robinson-Thrall theorem to derive properties of non-parametric tests) and mentions current trends of research. Numerous examples, exercises, and references round out the text |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 25. Sep 2019) |
Beschreibung: | 1 online resource |
ISBN: | 9781487582586 |
DOI: | 10.3138/9781487582586 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046211616 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 191023s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781487582586 |9 978-1-4875-8258-6 | ||
024 | 7 | |a 10.3138/9781487582586 |2 doi | |
035 | |a (ZDB-23-DGG)9781487582586 | ||
035 | |a (OCoLC)1125187699 | ||
035 | |a (DE-599)BVBBV046211616 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-859 |a DE-Aug4 |a DE-860 |a DE-739 |a DE-1043 |a DE-858 | ||
100 | 1 | |a Narayana, T.V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23 |c T.V. Narayana |
264 | 1 | |a Toronto |b University of Toronto Press |c [2019] | |
264 | 4 | |c © 1979 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Heritage | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 25. Sep 2019) | ||
520 | |a Lattice path combinatorics has developed greatly as a branch of probability studies recently, and the need for new books on the subject is obvious. The present monograph, by one who has made significant contributions to combinatorics and its applications to probability and statistics, will be useful to research workers, teachers, professional statisticians, and advanced students alike. It treats several recent results and it offers a powerful new tool for studying many problems in mathematical statistics. The emphasis in the five chapters is on 'dominance.' From a consideration of exceedances in the lattice path problem, the text goes on to provide solutions to tests of hypotheses and simple sampling plans, displaying the usefulness of Young chains in the enumeration of the latter. The fourth chapter, on knock-out tournaments, represents one approach to paired comparisons quite close in spirit to dominance and lattice path combinatorics, and the final chapter considers the advantages of using combinatorial methods in statistical problems (including the Frame-Robinson-Thrall theorem to derive properties of non-parametric tests) and mentions current trends of research. Numerous examples, exercises, and references round out the text | ||
546 | |a In English | ||
650 | 7 | |a MATHEMATICS / Probability & Statistics / General |2 bisacsh | |
856 | 4 | 0 | |u https://doi.org/10.3138/9781487582586 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031590502 | ||
966 | e | |u https://doi.org/10.3138/9781487582586 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.3138/9781487582586 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.3138/9781487582586 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.3138/9781487582586 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.3138/9781487582586 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.3138/9781487582586 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.3138/9781487582586 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180604750659584 |
---|---|
any_adam_object | |
author | Narayana, T.V |
author_facet | Narayana, T.V |
author_role | aut |
author_sort | Narayana, T.V |
author_variant | t n tn |
building | Verbundindex |
bvnumber | BV046211616 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9781487582586 (OCoLC)1125187699 (DE-599)BVBBV046211616 |
doi_str_mv | 10.3138/9781487582586 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03313nmm a2200457zc 4500</leader><controlfield tag="001">BV046211616</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">191023s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781487582586</subfield><subfield code="9">978-1-4875-8258-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3138/9781487582586</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781487582586</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1125187699</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046211616</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Narayana, T.V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23</subfield><subfield code="c">T.V. Narayana</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Toronto</subfield><subfield code="b">University of Toronto Press</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1979</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Heritage</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 25. Sep 2019)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Lattice path combinatorics has developed greatly as a branch of probability studies recently, and the need for new books on the subject is obvious. The present monograph, by one who has made significant contributions to combinatorics and its applications to probability and statistics, will be useful to research workers, teachers, professional statisticians, and advanced students alike. It treats several recent results and it offers a powerful new tool for studying many problems in mathematical statistics. The emphasis in the five chapters is on 'dominance.' From a consideration of exceedances in the lattice path problem, the text goes on to provide solutions to tests of hypotheses and simple sampling plans, displaying the usefulness of Young chains in the enumeration of the latter. The fourth chapter, on knock-out tournaments, represents one approach to paired comparisons quite close in spirit to dominance and lattice path combinatorics, and the final chapter considers the advantages of using combinatorial methods in statistical problems (including the Frame-Robinson-Thrall theorem to derive properties of non-parametric tests) and mentions current trends of research. Numerous examples, exercises, and references round out the text</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability & Statistics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3138/9781487582586</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031590502</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.3138/9781487582586</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.3138/9781487582586</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.3138/9781487582586</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.3138/9781487582586</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.3138/9781487582586</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.3138/9781487582586</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.3138/9781487582586</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046211616 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:38:24Z |
institution | BVB |
isbn | 9781487582586 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031590502 |
oclc_num | 1125187699 |
open_access_boolean | |
owner | DE-1046 DE-859 DE-Aug4 DE-860 DE-739 DE-1043 DE-858 |
owner_facet | DE-1046 DE-859 DE-Aug4 DE-860 DE-739 DE-1043 DE-858 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | University of Toronto Press |
record_format | marc |
series2 | Heritage |
spelling | Narayana, T.V. Verfasser aut Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23 T.V. Narayana Toronto University of Toronto Press [2019] © 1979 1 online resource txt rdacontent c rdamedia cr rdacarrier Heritage Description based on online resource; title from PDF title page (publisher's Web site, viewed 25. Sep 2019) Lattice path combinatorics has developed greatly as a branch of probability studies recently, and the need for new books on the subject is obvious. The present monograph, by one who has made significant contributions to combinatorics and its applications to probability and statistics, will be useful to research workers, teachers, professional statisticians, and advanced students alike. It treats several recent results and it offers a powerful new tool for studying many problems in mathematical statistics. The emphasis in the five chapters is on 'dominance.' From a consideration of exceedances in the lattice path problem, the text goes on to provide solutions to tests of hypotheses and simple sampling plans, displaying the usefulness of Young chains in the enumeration of the latter. The fourth chapter, on knock-out tournaments, represents one approach to paired comparisons quite close in spirit to dominance and lattice path combinatorics, and the final chapter considers the advantages of using combinatorial methods in statistical problems (including the Frame-Robinson-Thrall theorem to derive properties of non-parametric tests) and mentions current trends of research. Numerous examples, exercises, and references round out the text In English MATHEMATICS / Probability & Statistics / General bisacsh https://doi.org/10.3138/9781487582586 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Narayana, T.V Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23 MATHEMATICS / Probability & Statistics / General bisacsh |
title | Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23 |
title_auth | Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23 |
title_exact_search | Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23 |
title_full | Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23 T.V. Narayana |
title_fullStr | Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23 T.V. Narayana |
title_full_unstemmed | Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23 T.V. Narayana |
title_short | Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23 |
title_sort | lattice path combinatorics with statistical applications mathematical expositions 23 |
topic | MATHEMATICS / Probability & Statistics / General bisacsh |
topic_facet | MATHEMATICS / Probability & Statistics / General |
url | https://doi.org/10.3138/9781487582586 |
work_keys_str_mv | AT narayanatv latticepathcombinatoricswithstatisticalapplicationsmathematicalexpositions23 |