Partial differential equations in fluid mechanics:
The Euler and Navier-Stokes equations are the fundamental mathematical models of fluid mechanics, and their study remains central in the modern theory of partial differential equations. This volume of articles, derived from the workshop 'PDEs in Fluid Mechanics' held at the University of W...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2019
|
Schriftenreihe: | London Mathematical Society lecture note series
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBA01 URL des Erstveröffentlichers |
Zusammenfassung: | The Euler and Navier-Stokes equations are the fundamental mathematical models of fluid mechanics, and their study remains central in the modern theory of partial differential equations. This volume of articles, derived from the workshop 'PDEs in Fluid Mechanics' held at the University of Warwick in 2016, serves to consolidate, survey and further advance research in this area. It contains reviews of recent progress and classical results, as well as cutting-edge research articles. Topics include Onsager's conjecture for energy conservation in the Euler equations, weak-strong uniqueness in fluid models and several chapters address the Navier-Stokes equations directly; in particular, a retelling of Leray's formative 1934 paper in modern mathematical language. The book also covers more general PDE methods with applications in fluid mechanics and beyond. This collection will serve as a helpful overview of current research for graduate students new to the area and for more established researchers |
Beschreibung: | Title from publisher's bibliographic system (viewed on 26 Aug 2019) |
Beschreibung: | 1 Online-Ressource (ix, 326 Seiten) |
ISBN: | 9781108610575 |
DOI: | 10.1017/9781108610575 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046200022 | ||
003 | DE-604 | ||
005 | 20210615 | ||
007 | cr|uuu---uuuuu | ||
008 | 191016s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781108610575 |c Online |9 978-1-108-61057-5 | ||
024 | 7 | |a 10.1017/9781108610575 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108610575 | ||
035 | |a (OCoLC)1124791177 | ||
035 | |a (DE-599)BVBBV046200022 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-384 | ||
082 | 0 | |a 532 | |
245 | 1 | 0 | |a Partial differential equations in fluid mechanics |c edited by Charles L. Fefferman, James C. Robinson, José L. Rodrigo |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2019 | |
300 | |a 1 Online-Ressource (ix, 326 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series | |
500 | |a Title from publisher's bibliographic system (viewed on 26 Aug 2019) | ||
520 | |a The Euler and Navier-Stokes equations are the fundamental mathematical models of fluid mechanics, and their study remains central in the modern theory of partial differential equations. This volume of articles, derived from the workshop 'PDEs in Fluid Mechanics' held at the University of Warwick in 2016, serves to consolidate, survey and further advance research in this area. It contains reviews of recent progress and classical results, as well as cutting-edge research articles. Topics include Onsager's conjecture for energy conservation in the Euler equations, weak-strong uniqueness in fluid models and several chapters address the Navier-Stokes equations directly; in particular, a retelling of Leray's formative 1934 paper in modern mathematical language. The book also covers more general PDE methods with applications in fluid mechanics and beyond. This collection will serve as a helpful overview of current research for graduate students new to the area and for more established researchers | ||
650 | 4 | |a Fluid mechanics | |
650 | 4 | |a Differential equations, Partial | |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Fefferman, Charles |d 1949- |0 (DE-588)172569648 |4 edt | |
700 | 1 | |a Robinson, James C. |d 1969- |0 (DE-588)143220004 |4 edt | |
700 | 1 | |a Rodrigo Diez, José Luis |d 1977- |0 (DE-588)1170633315 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-46096-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108610575 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031579182 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/9781108610575 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108610575 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108610575 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180581577129984 |
---|---|
any_adam_object | |
author2 | Fefferman, Charles 1949- Robinson, James C. 1969- Rodrigo Diez, José Luis 1977- |
author2_role | edt edt edt |
author2_variant | c f cf j c r jc jcr d j l r djl djlr |
author_GND | (DE-588)172569648 (DE-588)143220004 (DE-588)1170633315 |
author_facet | Fefferman, Charles 1949- Robinson, James C. 1969- Rodrigo Diez, José Luis 1977- |
building | Verbundindex |
bvnumber | BV046200022 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108610575 (OCoLC)1124791177 (DE-599)BVBBV046200022 |
dewey-full | 532 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532 |
dewey-search | 532 |
dewey-sort | 3532 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/9781108610575 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03397nmm a2200541zc 4500</leader><controlfield tag="001">BV046200022</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210615 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">191016s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108610575</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-61057-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108610575</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108610575</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1124791177</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046200022</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial differential equations in fluid mechanics</subfield><subfield code="c">edited by Charles L. Fefferman, James C. Robinson, José L. Rodrigo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 326 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 26 Aug 2019)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Euler and Navier-Stokes equations are the fundamental mathematical models of fluid mechanics, and their study remains central in the modern theory of partial differential equations. This volume of articles, derived from the workshop 'PDEs in Fluid Mechanics' held at the University of Warwick in 2016, serves to consolidate, survey and further advance research in this area. It contains reviews of recent progress and classical results, as well as cutting-edge research articles. Topics include Onsager's conjecture for energy conservation in the Euler equations, weak-strong uniqueness in fluid models and several chapters address the Navier-Stokes equations directly; in particular, a retelling of Leray's formative 1934 paper in modern mathematical language. The book also covers more general PDE methods with applications in fluid mechanics and beyond. This collection will serve as a helpful overview of current research for graduate students new to the area and for more established researchers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fefferman, Charles</subfield><subfield code="d">1949-</subfield><subfield code="0">(DE-588)172569648</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robinson, James C.</subfield><subfield code="d">1969-</subfield><subfield code="0">(DE-588)143220004</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodrigo Diez, José Luis</subfield><subfield code="d">1977-</subfield><subfield code="0">(DE-588)1170633315</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-46096-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108610575</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031579182</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108610575</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108610575</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108610575</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV046200022 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:38:02Z |
institution | BVB |
isbn | 9781108610575 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031579182 |
oclc_num | 1124791177 |
open_access_boolean | |
owner | DE-12 DE-92 DE-384 |
owner_facet | DE-12 DE-92 DE-384 |
physical | 1 Online-Ressource (ix, 326 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Partial differential equations in fluid mechanics edited by Charles L. Fefferman, James C. Robinson, José L. Rodrigo Cambridge Cambridge University Press 2019 1 Online-Ressource (ix, 326 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series Title from publisher's bibliographic system (viewed on 26 Aug 2019) The Euler and Navier-Stokes equations are the fundamental mathematical models of fluid mechanics, and their study remains central in the modern theory of partial differential equations. This volume of articles, derived from the workshop 'PDEs in Fluid Mechanics' held at the University of Warwick in 2016, serves to consolidate, survey and further advance research in this area. It contains reviews of recent progress and classical results, as well as cutting-edge research articles. Topics include Onsager's conjecture for energy conservation in the Euler equations, weak-strong uniqueness in fluid models and several chapters address the Navier-Stokes equations directly; in particular, a retelling of Leray's formative 1934 paper in modern mathematical language. The book also covers more general PDE methods with applications in fluid mechanics and beyond. This collection will serve as a helpful overview of current research for graduate students new to the area and for more established researchers Fluid mechanics Differential equations, Partial Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift gnd-content Partielle Differentialgleichung (DE-588)4044779-0 s Strömungsmechanik (DE-588)4077970-1 s 2\p DE-604 Fefferman, Charles 1949- (DE-588)172569648 edt Robinson, James C. 1969- (DE-588)143220004 edt Rodrigo Diez, José Luis 1977- (DE-588)1170633315 edt Erscheint auch als Druck-Ausgabe 978-1-108-46096-5 https://doi.org/10.1017/9781108610575 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Partial differential equations in fluid mechanics Fluid mechanics Differential equations, Partial Strömungsmechanik (DE-588)4077970-1 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4077970-1 (DE-588)4044779-0 (DE-588)1071861417 |
title | Partial differential equations in fluid mechanics |
title_auth | Partial differential equations in fluid mechanics |
title_exact_search | Partial differential equations in fluid mechanics |
title_full | Partial differential equations in fluid mechanics edited by Charles L. Fefferman, James C. Robinson, José L. Rodrigo |
title_fullStr | Partial differential equations in fluid mechanics edited by Charles L. Fefferman, James C. Robinson, José L. Rodrigo |
title_full_unstemmed | Partial differential equations in fluid mechanics edited by Charles L. Fefferman, James C. Robinson, José L. Rodrigo |
title_short | Partial differential equations in fluid mechanics |
title_sort | partial differential equations in fluid mechanics |
topic | Fluid mechanics Differential equations, Partial Strömungsmechanik (DE-588)4077970-1 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Fluid mechanics Differential equations, Partial Strömungsmechanik Partielle Differentialgleichung Konferenzschrift |
url | https://doi.org/10.1017/9781108610575 |
work_keys_str_mv | AT feffermancharles partialdifferentialequationsinfluidmechanics AT robinsonjamesc partialdifferentialequationsinfluidmechanics AT rodrigodiezjoseluis partialdifferentialequationsinfluidmechanics |