Machine learning and artificial intelligence:
Introduction -- Part I Introduction to AI and ML -- Essential concepts in AL and ML -- Part II Techniques for Static Machine Learning Models -- Perceptron and Neural Networks -- Decision Trees -- Advanced Decision Trees -- Support Vector Machines -- Probabilistic Models -- Deep Learning -- Part III...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2020]
|
Schlagworte: | |
Zusammenfassung: | Introduction -- Part I Introduction to AI and ML -- Essential concepts in AL and ML -- Part II Techniques for Static Machine Learning Models -- Perceptron and Neural Networks -- Decision Trees -- Advanced Decision Trees -- Support Vector Machines -- Probabilistic Models -- Deep Learning -- Part III Techniques for Dynamic Machine Learning Models -- Autoregressive and Moving Average Models -- Hidden Markov Models and Conditional Random Fields -- Recurrent Neural Networks -- Part IV Applications -- Classification Regression -- Ranking -- Clustering -- Recommendations -- Next Best Actions -- Designing ML Pipelines -- Using ML Libraries -- Azure Machine Learning Studio -- Conclusions This book provides comprehensive coverage of combined Artificial Intelligence (AI) and Machine Learning (ML) theory and applications. Rather than looking at the field from only a theoretical or only a practical perspective, this book unifies both perspectives to give holistic understanding. The first part introduces the concepts of AI and ML and their origin and current state. The second and third parts delve into conceptual and theoretic aspects of static and dynamic ML techniques. The forth part describes the practical applications where presented techniques can be applied. The fifth part introduces the user to some of the implementation strategies for solving real life ML problems. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals. It makes minimal use of mathematics to make the topics more intuitive and accessible. Presents a full reference to artificial intelligence and machine learning techniques - in theory and application; Provides a guide to AI and ML with minimal use of mathematics to make the topics more intuitive and accessible; Connects all ML and AI techniques to applications and introduces implementations |
Beschreibung: | xxii, 261 Seiten Illustrationen, Diagramme |
ISBN: | 9783030266219 9783030266240 |
Internformat
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV046198689 | ||
003 | DE-604 | ||
005 | 20210609 | ||
007 | t | ||
008 | 191015s2020 gw a||| |||| 00||| eng d | ||
020 | |a 9783030266219 |c hbk |9 978-3-030-26621-9 | ||
020 | |a 9783030266240 |c pbk |9 978-3-030-26624-0 | ||
035 | |a (OCoLC)1142697399 | ||
035 | |a (DE-599)BVBBV046198689 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-M382 |a DE-355 |a DE-29T |a DE-859 | ||
050 | 0 | |a TK1-9971 | |
082 | 0 | |a 621.382 |2 23 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Joshi, Ameet V. |e Verfasser |0 (DE-588)1200676327 |4 aut | |
245 | 1 | 0 | |a Machine learning and artificial intelligence |c Ameet V Joshi |
264 | 1 | |a Cham, Switzerland |b Springer |c [2020] | |
300 | |a xxii, 261 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a Introduction -- Part I Introduction to AI and ML -- Essential concepts in AL and ML -- Part II Techniques for Static Machine Learning Models -- Perceptron and Neural Networks -- Decision Trees -- Advanced Decision Trees -- Support Vector Machines -- Probabilistic Models -- Deep Learning -- Part III Techniques for Dynamic Machine Learning Models -- Autoregressive and Moving Average Models -- Hidden Markov Models and Conditional Random Fields -- Recurrent Neural Networks -- Part IV Applications -- Classification Regression -- Ranking -- Clustering -- Recommendations -- Next Best Actions -- Designing ML Pipelines -- Using ML Libraries -- Azure Machine Learning Studio -- Conclusions | |
520 | 3 | |a This book provides comprehensive coverage of combined Artificial Intelligence (AI) and Machine Learning (ML) theory and applications. Rather than looking at the field from only a theoretical or only a practical perspective, this book unifies both perspectives to give holistic understanding. The first part introduces the concepts of AI and ML and their origin and current state. The second and third parts delve into conceptual and theoretic aspects of static and dynamic ML techniques. The forth part describes the practical applications where presented techniques can be applied. The fifth part introduces the user to some of the implementation strategies for solving real life ML problems. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals. It makes minimal use of mathematics to make the topics more intuitive and accessible. Presents a full reference to artificial intelligence and machine learning techniques - in theory and application; Provides a guide to AI and ML with minimal use of mathematics to make the topics more intuitive and accessible; Connects all ML and AI techniques to applications and introduces implementations | |
650 | 0 | 7 | |a Informationstheorie |0 (DE-588)4026927-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
653 | 0 | |a Telecommunication | |
653 | 0 | |a Machine learning | |
653 | 0 | |a Engineering | |
653 | 0 | |a Data mining | |
653 | 0 | |a Information storage and retrieval systems | |
653 | 0 | |a Big data | |
653 | 0 | |a Communications Engineering, Networks | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 2 | |a Informationstheorie |0 (DE-588)4026927-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-26622-6 |
999 | |a oai:aleph.bib-bvb.de:BVB01-031577878 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804180579024896000 |
---|---|
any_adam_object | |
author | Joshi, Ameet V. |
author_GND | (DE-588)1200676327 |
author_facet | Joshi, Ameet V. |
author_role | aut |
author_sort | Joshi, Ameet V. |
author_variant | a v j av avj |
building | Verbundindex |
bvnumber | BV046198689 |
callnumber-first | T - Technology |
callnumber-label | TK1-9971 |
callnumber-raw | TK1-9971 |
callnumber-search | TK1-9971 |
callnumber-sort | TK 11 49971 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ST 300 |
ctrlnum | (OCoLC)1142697399 (DE-599)BVBBV046198689 |
dewey-full | 621.382 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.382 |
dewey-search | 621.382 |
dewey-sort | 3621.382 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Informatik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03740nam a22005291c 4500</leader><controlfield tag="001">BV046198689</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210609 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">191015s2020 gw a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030266219</subfield><subfield code="c">hbk</subfield><subfield code="9">978-3-030-26621-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030266240</subfield><subfield code="c">pbk</subfield><subfield code="9">978-3-030-26624-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1142697399</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046198689</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M382</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-859</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Joshi, Ameet V.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1200676327</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning and artificial intelligence</subfield><subfield code="c">Ameet V Joshi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxii, 261 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Introduction -- Part I Introduction to AI and ML -- Essential concepts in AL and ML -- Part II Techniques for Static Machine Learning Models -- Perceptron and Neural Networks -- Decision Trees -- Advanced Decision Trees -- Support Vector Machines -- Probabilistic Models -- Deep Learning -- Part III Techniques for Dynamic Machine Learning Models -- Autoregressive and Moving Average Models -- Hidden Markov Models and Conditional Random Fields -- Recurrent Neural Networks -- Part IV Applications -- Classification Regression -- Ranking -- Clustering -- Recommendations -- Next Best Actions -- Designing ML Pipelines -- Using ML Libraries -- Azure Machine Learning Studio -- Conclusions</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book provides comprehensive coverage of combined Artificial Intelligence (AI) and Machine Learning (ML) theory and applications. Rather than looking at the field from only a theoretical or only a practical perspective, this book unifies both perspectives to give holistic understanding. The first part introduces the concepts of AI and ML and their origin and current state. The second and third parts delve into conceptual and theoretic aspects of static and dynamic ML techniques. The forth part describes the practical applications where presented techniques can be applied. The fifth part introduces the user to some of the implementation strategies for solving real life ML problems. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals. It makes minimal use of mathematics to make the topics more intuitive and accessible. Presents a full reference to artificial intelligence and machine learning techniques - in theory and application; Provides a guide to AI and ML with minimal use of mathematics to make the topics more intuitive and accessible; Connects all ML and AI techniques to applications and introduces implementations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informationstheorie</subfield><subfield code="0">(DE-588)4026927-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Telecommunication</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Information storage and retrieval systems</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Communications Engineering, Networks</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Informationstheorie</subfield><subfield code="0">(DE-588)4026927-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-26622-6</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031577878</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV046198689 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:38:00Z |
institution | BVB |
isbn | 9783030266219 9783030266240 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031577878 |
oclc_num | 1142697399 |
open_access_boolean | |
owner | DE-M382 DE-355 DE-BY-UBR DE-29T DE-859 |
owner_facet | DE-M382 DE-355 DE-BY-UBR DE-29T DE-859 |
physical | xxii, 261 Seiten Illustrationen, Diagramme |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer |
record_format | marc |
spelling | Joshi, Ameet V. Verfasser (DE-588)1200676327 aut Machine learning and artificial intelligence Ameet V Joshi Cham, Switzerland Springer [2020] xxii, 261 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Introduction -- Part I Introduction to AI and ML -- Essential concepts in AL and ML -- Part II Techniques for Static Machine Learning Models -- Perceptron and Neural Networks -- Decision Trees -- Advanced Decision Trees -- Support Vector Machines -- Probabilistic Models -- Deep Learning -- Part III Techniques for Dynamic Machine Learning Models -- Autoregressive and Moving Average Models -- Hidden Markov Models and Conditional Random Fields -- Recurrent Neural Networks -- Part IV Applications -- Classification Regression -- Ranking -- Clustering -- Recommendations -- Next Best Actions -- Designing ML Pipelines -- Using ML Libraries -- Azure Machine Learning Studio -- Conclusions This book provides comprehensive coverage of combined Artificial Intelligence (AI) and Machine Learning (ML) theory and applications. Rather than looking at the field from only a theoretical or only a practical perspective, this book unifies both perspectives to give holistic understanding. The first part introduces the concepts of AI and ML and their origin and current state. The second and third parts delve into conceptual and theoretic aspects of static and dynamic ML techniques. The forth part describes the practical applications where presented techniques can be applied. The fifth part introduces the user to some of the implementation strategies for solving real life ML problems. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals. It makes minimal use of mathematics to make the topics more intuitive and accessible. Presents a full reference to artificial intelligence and machine learning techniques - in theory and application; Provides a guide to AI and ML with minimal use of mathematics to make the topics more intuitive and accessible; Connects all ML and AI techniques to applications and introduces implementations Informationstheorie (DE-588)4026927-9 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Telecommunication Machine learning Engineering Data mining Information storage and retrieval systems Big data Communications Engineering, Networks Maschinelles Lernen (DE-588)4193754-5 s Künstliche Intelligenz (DE-588)4033447-8 s Informationstheorie (DE-588)4026927-9 s 1\p DE-604 Erscheint auch als Online-Ausgabe 978-3-030-26622-6 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Joshi, Ameet V. Machine learning and artificial intelligence Informationstheorie (DE-588)4026927-9 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
subject_GND | (DE-588)4026927-9 (DE-588)4193754-5 (DE-588)4033447-8 |
title | Machine learning and artificial intelligence |
title_auth | Machine learning and artificial intelligence |
title_exact_search | Machine learning and artificial intelligence |
title_full | Machine learning and artificial intelligence Ameet V Joshi |
title_fullStr | Machine learning and artificial intelligence Ameet V Joshi |
title_full_unstemmed | Machine learning and artificial intelligence Ameet V Joshi |
title_short | Machine learning and artificial intelligence |
title_sort | machine learning and artificial intelligence |
topic | Informationstheorie (DE-588)4026927-9 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
topic_facet | Informationstheorie Maschinelles Lernen Künstliche Intelligenz |
work_keys_str_mv | AT joshiameetv machinelearningandartificialintelligence |