Keras reinforcement learning projects: 9 projects exploring popular reinforcement learning techniques to build self-learning agents

Keras Reinforcement Learning Projects book teaches you essential concept, techniques and, models of reinforcement learning using best real-world demonstrations. You will explore popular algorithms such as Markov decision process, Monte Carlo, Q-learning making you equipped with complex statistics in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ciaburro, Giuseppe (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Birmingham ; Mumbai Packt Publishing 2018
Schlagworte:
Zusammenfassung:Keras Reinforcement Learning Projects book teaches you essential concept, techniques and, models of reinforcement learning using best real-world demonstrations. You will explore popular algorithms such as Markov decision process, Monte Carlo, Q-learning making you equipped with complex statistics in various projects with the help of Keras
Intro -- Title Page -- Copyright and Credits -- Packt Upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1: Overview of Keras Reinforcement Learning -- Basic concepts of machine learning -- Discovering the different types of machine learning -- Supervised learning -- Unsupervised learning -- Reinforcement learning -- Building machine learning models step by step -- Getting started with reinforcement learning -- Agent-environment interface -- Markov Decision Process -- Discounted cumulative reward -- Exploration versus exploitation -- Reinforcement learning algorithms -- Dynamic Programming -- Monte Carlo methods -- Temporal difference learning -- SARSA -- Q-learning -- Deep Q-learning -- Summary -- Chapter 2: Simulating Random Walks -- Random walks -- One-dimensional random walk -- Simulating 1D random walk -- Markov chains -- Stochastic process -- Probability calculation -- Markov chain definition -- Transition matrix -- Transition diagram -- Weather forecasting with Markov chains -- Generating pseudorandom text with Markov chains -- Summary -- Chapter 3: Optimal Portfolio Selection -- Dynamic Programming -- Divide and conquer versus Dynamic Programming -- Memoization -- Dynamic Programming in reinforcement-learning applications -- Optimizing a financial portfolio -- Optimization techniques -- Solving the knapsack problem using Dynamic Programming -- Different approaches to the problem -- Brute force -- Greedy algorithms -- Dynamic Programming -- Summary -- Chapter 4: Forecasting Stock Market Prices -- Monte Carlo methods -- Historical background -- Basic concepts of the Monte Carlo simulation -- Monte Carlo applications -- Numerical integration using the Monte Carlo method -- Monte Carlo for prediction and control -- Amazon stock price prediction using Python -- Exploratory analysis -- The Geometric Brownian motion model
Monte Carlo simulation -- Summary -- Chapter 5: Delivery Vehicle Routing Application -- Temporal difference learning -- SARSA -- Q-learning -- Basics of graph theory -- The adjacency matrix -- Adjacency lists -- Graphs as data structures in Python -- Graphs using the NetworkX package -- Finding the shortest path -- The Dijkstra algorithm -- The Dijkstra algorithm using the NetworkX package -- The Google Maps algorithm -- The Vehicle Routing Problem -- Summary -- Chapter 6: Continuous Balancing of a Rotating Mechanical System -- Neural network basic concepts -- The Keras neural network model -- Classifying breast cancer using the neural network -- Deep reinforcement learning -- The Keras-RL package -- Continuous control with deep reinforcement learning -- Summary -- Chapter 7: Dynamic Modeling of a Segway as an Inverted Pendulum System -- How Segways work -- System modeling basics -- OpenAI Gym -- OpenAI Gym methods -- OpenAI Gym installation -- The CartPole system -- Q-learning solution -- Deep Q-learning solution -- Summary -- Chapter 8: Robot Control System Using Deep Reinforcement Learning -- Robot control -- Robotics overview -- Robot evolution -- First-generation robots -- Second-generation robots -- Third-generation robots -- Fourth-generation robots -- Robot autonomy -- Robot mobility -- Automatic control -- Control architectures -- The FrozenLake environment -- The Q-learning solution -- A Deep Q-learning solution -- Summary -- Chapter 9: Handwritten Digit Recognizer -- Handwritten digit recognition -- Optical Character Recognition -- Computer vision -- Handwritten digit recognition using an autoencoder -- Loading data -- Model architecture -- Deep autoencoder Q-learning -- Summary -- Chapter 10: Playing the Board Game Go -- Game theory -- Basic concepts -- Game types -- Cooperative games -- Symmetrical games -- Zero-sum games
Beschreibung:IV, 277 Seiten Illustrationen
ISBN:9781789342093

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!