Keras reinforcement learning projects: 9 projects exploring popular reinforcement learning techniques to build self-learning agents
Keras Reinforcement Learning Projects book teaches you essential concept, techniques and, models of reinforcement learning using best real-world demonstrations. You will explore popular algorithms such as Markov decision process, Monte Carlo, Q-learning making you equipped with complex statistics in...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Birmingham ; Mumbai
Packt Publishing
2018
|
Schlagworte: | |
Zusammenfassung: | Keras Reinforcement Learning Projects book teaches you essential concept, techniques and, models of reinforcement learning using best real-world demonstrations. You will explore popular algorithms such as Markov decision process, Monte Carlo, Q-learning making you equipped with complex statistics in various projects with the help of Keras Intro -- Title Page -- Copyright and Credits -- Packt Upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1: Overview of Keras Reinforcement Learning -- Basic concepts of machine learning -- Discovering the different types of machine learning -- Supervised learning -- Unsupervised learning -- Reinforcement learning -- Building machine learning models step by step -- Getting started with reinforcement learning -- Agent-environment interface -- Markov Decision Process -- Discounted cumulative reward -- Exploration versus exploitation -- Reinforcement learning algorithms -- Dynamic Programming -- Monte Carlo methods -- Temporal difference learning -- SARSA -- Q-learning -- Deep Q-learning -- Summary -- Chapter 2: Simulating Random Walks -- Random walks -- One-dimensional random walk -- Simulating 1D random walk -- Markov chains -- Stochastic process -- Probability calculation -- Markov chain definition -- Transition matrix -- Transition diagram -- Weather forecasting with Markov chains -- Generating pseudorandom text with Markov chains -- Summary -- Chapter 3: Optimal Portfolio Selection -- Dynamic Programming -- Divide and conquer versus Dynamic Programming -- Memoization -- Dynamic Programming in reinforcement-learning applications -- Optimizing a financial portfolio -- Optimization techniques -- Solving the knapsack problem using Dynamic Programming -- Different approaches to the problem -- Brute force -- Greedy algorithms -- Dynamic Programming -- Summary -- Chapter 4: Forecasting Stock Market Prices -- Monte Carlo methods -- Historical background -- Basic concepts of the Monte Carlo simulation -- Monte Carlo applications -- Numerical integration using the Monte Carlo method -- Monte Carlo for prediction and control -- Amazon stock price prediction using Python -- Exploratory analysis -- The Geometric Brownian motion model Monte Carlo simulation -- Summary -- Chapter 5: Delivery Vehicle Routing Application -- Temporal difference learning -- SARSA -- Q-learning -- Basics of graph theory -- The adjacency matrix -- Adjacency lists -- Graphs as data structures in Python -- Graphs using the NetworkX package -- Finding the shortest path -- The Dijkstra algorithm -- The Dijkstra algorithm using the NetworkX package -- The Google Maps algorithm -- The Vehicle Routing Problem -- Summary -- Chapter 6: Continuous Balancing of a Rotating Mechanical System -- Neural network basic concepts -- The Keras neural network model -- Classifying breast cancer using the neural network -- Deep reinforcement learning -- The Keras-RL package -- Continuous control with deep reinforcement learning -- Summary -- Chapter 7: Dynamic Modeling of a Segway as an Inverted Pendulum System -- How Segways work -- System modeling basics -- OpenAI Gym -- OpenAI Gym methods -- OpenAI Gym installation -- The CartPole system -- Q-learning solution -- Deep Q-learning solution -- Summary -- Chapter 8: Robot Control System Using Deep Reinforcement Learning -- Robot control -- Robotics overview -- Robot evolution -- First-generation robots -- Second-generation robots -- Third-generation robots -- Fourth-generation robots -- Robot autonomy -- Robot mobility -- Automatic control -- Control architectures -- The FrozenLake environment -- The Q-learning solution -- A Deep Q-learning solution -- Summary -- Chapter 9: Handwritten Digit Recognizer -- Handwritten digit recognition -- Optical Character Recognition -- Computer vision -- Handwritten digit recognition using an autoencoder -- Loading data -- Model architecture -- Deep autoencoder Q-learning -- Summary -- Chapter 10: Playing the Board Game Go -- Game theory -- Basic concepts -- Game types -- Cooperative games -- Symmetrical games -- Zero-sum games |
Beschreibung: | IV, 277 Seiten Illustrationen |
ISBN: | 9781789342093 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046166294 | ||
003 | DE-604 | ||
005 | 20191028 | ||
007 | t | ||
008 | 190919s2018 a||| |||| 00||| eng d | ||
020 | |a 9781789342093 |9 978-1-78934-209-3 | ||
035 | |a (OCoLC)1126556236 | ||
035 | |a (DE-599)BVBBV046166294 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-11 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Ciaburro, Giuseppe |e Verfasser |0 (DE-588)1158671741 |4 aut | |
245 | 1 | 0 | |a Keras reinforcement learning projects |b 9 projects exploring popular reinforcement learning techniques to build self-learning agents |c Giuseppe Ciaburro |
264 | 1 | |a Birmingham ; Mumbai |b Packt Publishing |c 2018 | |
264 | 4 | |c © 2018 | |
300 | |a IV, 277 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a Keras Reinforcement Learning Projects book teaches you essential concept, techniques and, models of reinforcement learning using best real-world demonstrations. You will explore popular algorithms such as Markov decision process, Monte Carlo, Q-learning making you equipped with complex statistics in various projects with the help of Keras | |
520 | 3 | |a Intro -- Title Page -- Copyright and Credits -- Packt Upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1: Overview of Keras Reinforcement Learning -- Basic concepts of machine learning -- Discovering the different types of machine learning -- Supervised learning -- Unsupervised learning -- Reinforcement learning -- Building machine learning models step by step -- Getting started with reinforcement learning -- Agent-environment interface -- Markov Decision Process -- Discounted cumulative reward -- Exploration versus exploitation -- Reinforcement learning algorithms -- Dynamic Programming -- Monte Carlo methods -- Temporal difference learning -- SARSA -- Q-learning -- Deep Q-learning -- Summary -- Chapter 2: Simulating Random Walks -- Random walks -- One-dimensional random walk -- Simulating 1D random walk -- Markov chains -- Stochastic process -- Probability calculation -- Markov chain definition -- Transition matrix -- Transition diagram -- Weather forecasting with Markov chains -- Generating pseudorandom text with Markov chains -- Summary -- Chapter 3: Optimal Portfolio Selection -- Dynamic Programming -- Divide and conquer versus Dynamic Programming -- Memoization -- Dynamic Programming in reinforcement-learning applications -- Optimizing a financial portfolio -- Optimization techniques -- Solving the knapsack problem using Dynamic Programming -- Different approaches to the problem -- Brute force -- Greedy algorithms -- Dynamic Programming -- Summary -- Chapter 4: Forecasting Stock Market Prices -- Monte Carlo methods -- Historical background -- Basic concepts of the Monte Carlo simulation -- Monte Carlo applications -- Numerical integration using the Monte Carlo method -- Monte Carlo for prediction and control -- Amazon stock price prediction using Python -- Exploratory analysis -- The Geometric Brownian motion model | |
520 | 3 | |a Monte Carlo simulation -- Summary -- Chapter 5: Delivery Vehicle Routing Application -- Temporal difference learning -- SARSA -- Q-learning -- Basics of graph theory -- The adjacency matrix -- Adjacency lists -- Graphs as data structures in Python -- Graphs using the NetworkX package -- Finding the shortest path -- The Dijkstra algorithm -- The Dijkstra algorithm using the NetworkX package -- The Google Maps algorithm -- The Vehicle Routing Problem -- Summary -- Chapter 6: Continuous Balancing of a Rotating Mechanical System -- Neural network basic concepts -- The Keras neural network model -- Classifying breast cancer using the neural network -- Deep reinforcement learning -- The Keras-RL package -- Continuous control with deep reinforcement learning -- Summary -- Chapter 7: Dynamic Modeling of a Segway as an Inverted Pendulum System -- How Segways work -- System modeling basics -- OpenAI Gym -- OpenAI Gym methods -- OpenAI Gym installation -- The CartPole system -- Q-learning solution -- Deep Q-learning solution -- Summary -- Chapter 8: Robot Control System Using Deep Reinforcement Learning -- Robot control -- Robotics overview -- Robot evolution -- First-generation robots -- Second-generation robots -- Third-generation robots -- Fourth-generation robots -- Robot autonomy -- Robot mobility -- Automatic control -- Control architectures -- The FrozenLake environment -- The Q-learning solution -- A Deep Q-learning solution -- Summary -- Chapter 9: Handwritten Digit Recognizer -- Handwritten digit recognition -- Optical Character Recognition -- Computer vision -- Handwritten digit recognition using an autoencoder -- Loading data -- Model architecture -- Deep autoencoder Q-learning -- Summary -- Chapter 10: Playing the Board Game Go -- Game theory -- Basic concepts -- Game types -- Cooperative games -- Symmetrical games -- Zero-sum games | |
653 | 0 | |a Machine learning | |
653 | 0 | |a Neural networks | |
653 | 0 | |a Machine learning | |
999 | |a oai:aleph.bib-bvb.de:BVB01-031546139 |
Datensatz im Suchindex
_version_ | 1804180520380137472 |
---|---|
any_adam_object | |
author | Ciaburro, Giuseppe |
author_GND | (DE-588)1158671741 |
author_facet | Ciaburro, Giuseppe |
author_role | aut |
author_sort | Ciaburro, Giuseppe |
author_variant | g c gc |
building | Verbundindex |
bvnumber | BV046166294 |
classification_rvk | ST 300 |
ctrlnum | (OCoLC)1126556236 (DE-599)BVBBV046166294 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05145nam a2200349 c 4500</leader><controlfield tag="001">BV046166294</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191028 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190919s2018 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789342093</subfield><subfield code="9">978-1-78934-209-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1126556236</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046166294</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ciaburro, Giuseppe</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1158671741</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Keras reinforcement learning projects</subfield><subfield code="b">9 projects exploring popular reinforcement learning techniques to build self-learning agents</subfield><subfield code="c">Giuseppe Ciaburro</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham ; Mumbai</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">2018</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IV, 277 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Keras Reinforcement Learning Projects book teaches you essential concept, techniques and, models of reinforcement learning using best real-world demonstrations. You will explore popular algorithms such as Markov decision process, Monte Carlo, Q-learning making you equipped with complex statistics in various projects with the help of Keras</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Intro -- Title Page -- Copyright and Credits -- Packt Upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1: Overview of Keras Reinforcement Learning -- Basic concepts of machine learning -- Discovering the different types of machine learning -- Supervised learning -- Unsupervised learning -- Reinforcement learning -- Building machine learning models step by step -- Getting started with reinforcement learning -- Agent-environment interface -- Markov Decision Process -- Discounted cumulative reward -- Exploration versus exploitation -- Reinforcement learning algorithms -- Dynamic Programming -- Monte Carlo methods -- Temporal difference learning -- SARSA -- Q-learning -- Deep Q-learning -- Summary -- Chapter 2: Simulating Random Walks -- Random walks -- One-dimensional random walk -- Simulating 1D random walk -- Markov chains -- Stochastic process -- Probability calculation -- Markov chain definition -- Transition matrix -- Transition diagram -- Weather forecasting with Markov chains -- Generating pseudorandom text with Markov chains -- Summary -- Chapter 3: Optimal Portfolio Selection -- Dynamic Programming -- Divide and conquer versus Dynamic Programming -- Memoization -- Dynamic Programming in reinforcement-learning applications -- Optimizing a financial portfolio -- Optimization techniques -- Solving the knapsack problem using Dynamic Programming -- Different approaches to the problem -- Brute force -- Greedy algorithms -- Dynamic Programming -- Summary -- Chapter 4: Forecasting Stock Market Prices -- Monte Carlo methods -- Historical background -- Basic concepts of the Monte Carlo simulation -- Monte Carlo applications -- Numerical integration using the Monte Carlo method -- Monte Carlo for prediction and control -- Amazon stock price prediction using Python -- Exploratory analysis -- The Geometric Brownian motion model</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Monte Carlo simulation -- Summary -- Chapter 5: Delivery Vehicle Routing Application -- Temporal difference learning -- SARSA -- Q-learning -- Basics of graph theory -- The adjacency matrix -- Adjacency lists -- Graphs as data structures in Python -- Graphs using the NetworkX package -- Finding the shortest path -- The Dijkstra algorithm -- The Dijkstra algorithm using the NetworkX package -- The Google Maps algorithm -- The Vehicle Routing Problem -- Summary -- Chapter 6: Continuous Balancing of a Rotating Mechanical System -- Neural network basic concepts -- The Keras neural network model -- Classifying breast cancer using the neural network -- Deep reinforcement learning -- The Keras-RL package -- Continuous control with deep reinforcement learning -- Summary -- Chapter 7: Dynamic Modeling of a Segway as an Inverted Pendulum System -- How Segways work -- System modeling basics -- OpenAI Gym -- OpenAI Gym methods -- OpenAI Gym installation -- The CartPole system -- Q-learning solution -- Deep Q-learning solution -- Summary -- Chapter 8: Robot Control System Using Deep Reinforcement Learning -- Robot control -- Robotics overview -- Robot evolution -- First-generation robots -- Second-generation robots -- Third-generation robots -- Fourth-generation robots -- Robot autonomy -- Robot mobility -- Automatic control -- Control architectures -- The FrozenLake environment -- The Q-learning solution -- A Deep Q-learning solution -- Summary -- Chapter 9: Handwritten Digit Recognizer -- Handwritten digit recognition -- Optical Character Recognition -- Computer vision -- Handwritten digit recognition using an autoencoder -- Loading data -- Model architecture -- Deep autoencoder Q-learning -- Summary -- Chapter 10: Playing the Board Game Go -- Game theory -- Basic concepts -- Game types -- Cooperative games -- Symmetrical games -- Zero-sum games</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neural networks</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031546139</subfield></datafield></record></collection> |
id | DE-604.BV046166294 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:37:04Z |
institution | BVB |
isbn | 9781789342093 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031546139 |
oclc_num | 1126556236 |
open_access_boolean | |
owner | DE-11 |
owner_facet | DE-11 |
physical | IV, 277 Seiten Illustrationen |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Packt Publishing |
record_format | marc |
spelling | Ciaburro, Giuseppe Verfasser (DE-588)1158671741 aut Keras reinforcement learning projects 9 projects exploring popular reinforcement learning techniques to build self-learning agents Giuseppe Ciaburro Birmingham ; Mumbai Packt Publishing 2018 © 2018 IV, 277 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Keras Reinforcement Learning Projects book teaches you essential concept, techniques and, models of reinforcement learning using best real-world demonstrations. You will explore popular algorithms such as Markov decision process, Monte Carlo, Q-learning making you equipped with complex statistics in various projects with the help of Keras Intro -- Title Page -- Copyright and Credits -- Packt Upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1: Overview of Keras Reinforcement Learning -- Basic concepts of machine learning -- Discovering the different types of machine learning -- Supervised learning -- Unsupervised learning -- Reinforcement learning -- Building machine learning models step by step -- Getting started with reinforcement learning -- Agent-environment interface -- Markov Decision Process -- Discounted cumulative reward -- Exploration versus exploitation -- Reinforcement learning algorithms -- Dynamic Programming -- Monte Carlo methods -- Temporal difference learning -- SARSA -- Q-learning -- Deep Q-learning -- Summary -- Chapter 2: Simulating Random Walks -- Random walks -- One-dimensional random walk -- Simulating 1D random walk -- Markov chains -- Stochastic process -- Probability calculation -- Markov chain definition -- Transition matrix -- Transition diagram -- Weather forecasting with Markov chains -- Generating pseudorandom text with Markov chains -- Summary -- Chapter 3: Optimal Portfolio Selection -- Dynamic Programming -- Divide and conquer versus Dynamic Programming -- Memoization -- Dynamic Programming in reinforcement-learning applications -- Optimizing a financial portfolio -- Optimization techniques -- Solving the knapsack problem using Dynamic Programming -- Different approaches to the problem -- Brute force -- Greedy algorithms -- Dynamic Programming -- Summary -- Chapter 4: Forecasting Stock Market Prices -- Monte Carlo methods -- Historical background -- Basic concepts of the Monte Carlo simulation -- Monte Carlo applications -- Numerical integration using the Monte Carlo method -- Monte Carlo for prediction and control -- Amazon stock price prediction using Python -- Exploratory analysis -- The Geometric Brownian motion model Monte Carlo simulation -- Summary -- Chapter 5: Delivery Vehicle Routing Application -- Temporal difference learning -- SARSA -- Q-learning -- Basics of graph theory -- The adjacency matrix -- Adjacency lists -- Graphs as data structures in Python -- Graphs using the NetworkX package -- Finding the shortest path -- The Dijkstra algorithm -- The Dijkstra algorithm using the NetworkX package -- The Google Maps algorithm -- The Vehicle Routing Problem -- Summary -- Chapter 6: Continuous Balancing of a Rotating Mechanical System -- Neural network basic concepts -- The Keras neural network model -- Classifying breast cancer using the neural network -- Deep reinforcement learning -- The Keras-RL package -- Continuous control with deep reinforcement learning -- Summary -- Chapter 7: Dynamic Modeling of a Segway as an Inverted Pendulum System -- How Segways work -- System modeling basics -- OpenAI Gym -- OpenAI Gym methods -- OpenAI Gym installation -- The CartPole system -- Q-learning solution -- Deep Q-learning solution -- Summary -- Chapter 8: Robot Control System Using Deep Reinforcement Learning -- Robot control -- Robotics overview -- Robot evolution -- First-generation robots -- Second-generation robots -- Third-generation robots -- Fourth-generation robots -- Robot autonomy -- Robot mobility -- Automatic control -- Control architectures -- The FrozenLake environment -- The Q-learning solution -- A Deep Q-learning solution -- Summary -- Chapter 9: Handwritten Digit Recognizer -- Handwritten digit recognition -- Optical Character Recognition -- Computer vision -- Handwritten digit recognition using an autoencoder -- Loading data -- Model architecture -- Deep autoencoder Q-learning -- Summary -- Chapter 10: Playing the Board Game Go -- Game theory -- Basic concepts -- Game types -- Cooperative games -- Symmetrical games -- Zero-sum games Machine learning Neural networks |
spellingShingle | Ciaburro, Giuseppe Keras reinforcement learning projects 9 projects exploring popular reinforcement learning techniques to build self-learning agents |
title | Keras reinforcement learning projects 9 projects exploring popular reinforcement learning techniques to build self-learning agents |
title_auth | Keras reinforcement learning projects 9 projects exploring popular reinforcement learning techniques to build self-learning agents |
title_exact_search | Keras reinforcement learning projects 9 projects exploring popular reinforcement learning techniques to build self-learning agents |
title_full | Keras reinforcement learning projects 9 projects exploring popular reinforcement learning techniques to build self-learning agents Giuseppe Ciaburro |
title_fullStr | Keras reinforcement learning projects 9 projects exploring popular reinforcement learning techniques to build self-learning agents Giuseppe Ciaburro |
title_full_unstemmed | Keras reinforcement learning projects 9 projects exploring popular reinforcement learning techniques to build self-learning agents Giuseppe Ciaburro |
title_short | Keras reinforcement learning projects |
title_sort | keras reinforcement learning projects 9 projects exploring popular reinforcement learning techniques to build self learning agents |
title_sub | 9 projects exploring popular reinforcement learning techniques to build self-learning agents |
work_keys_str_mv | AT ciaburrogiuseppe kerasreinforcementlearningprojects9projectsexploringpopularreinforcementlearningtechniquestobuildselflearningagents |