Computational models of rhythm and meter:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2018]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xii, 187 Seiten Illustrationen, Notenbeispiele, Diagramme |
ISBN: | 9783319762845 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV046153366 | ||
003 | DE-604 | ||
005 | 20191105 | ||
007 | t | ||
008 | 190910s2018 agl| |||| 00||| eng d | ||
020 | |a 9783319762845 |c Festeinband |9 978-3-319-76284-5 | ||
035 | |a (OCoLC)1059419690 | ||
035 | |a (DE-599)BVBBV046153366 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 | ||
082 | 0 | |a 006.4 |2 23 | |
084 | |a MUS |q DE-12 |2 fid | ||
100 | 1 | |a Bönn, Georg |d 1965- |e Verfasser |0 (DE-588)134737547 |4 aut | |
245 | 1 | 0 | |a Computational models of rhythm and meter |c Georg Boenn |
264 | 1 | |a Cham, Switzerland |b Springer |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a xii, 187 Seiten |b Illustrationen, Notenbeispiele, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Computer Science | |
650 | 4 | |a Pattern Recognition | |
650 | 4 | |a Simulation and Modeling | |
650 | 4 | |a Mathematics in Music | |
650 | 4 | |a Computer science | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Pattern recognition | |
650 | 4 | |a Mathematics | |
650 | 0 | 7 | |a Computermusik |0 (DE-588)4113239-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rhythmus |0 (DE-588)4132330-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Metrum |0 (DE-588)4169752-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Computermusik |0 (DE-588)4113239-7 |D s |
689 | 0 | 1 | |a Rhythmus |0 (DE-588)4132330-0 |D s |
689 | 0 | 2 | |a Metrum |0 (DE-588)4169752-2 |D s |
689 | 0 | 3 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-319-76285-2 |
856 | 4 | 2 | |m Digitalisierung BSB München - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031533451&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |q BSB_NED_20191105 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-031533451 | ||
942 | 1 | 1 | |c 780.051 |e 22/bsb |
942 | 1 | 1 | |c 781 |e 22/bsb |
Datensatz im Suchindex
_version_ | 1804180497974165504 |
---|---|
adam_text | Contents 1 Introduction................................................................................................... References....................................................................................................... 1 6 2 Phenomenologyof Rhythm and Meter..................................................... 2.1 Causality.............................................................................................. 2.2 Definitions of Rhythm and Meter................................................... 2.3 Organic Form....................................................................................... 2.3.1 The Cycle in Organic Form............................................... 2.3.2 Breathing................................................................................ References....................................................................................................... 7 7 8 10 11 12 13 3 A ShorthandNotation for MusicalRhythm............................................. 3.1 Introduction......................................................................................... 3.2 Overview of Rhythm Notation.......................................................... 3.3 Chunks of Musical Time: A Shorthand Notation for Rhythm ......................................................................................... 3.3.1 Rhythm and the Psychology of Chunking....................... 3.3.2 Subdivisions......................................................................... 3.4
Examples.............................................................................................. 3.4.1 The Ewe Rhythm................................................................. 3.4.2 Latin-American Music........................................................ 3.4.3 Greek Verse Rhythms........................................................ 3.4.4 Messiaen............................................................................... 3.4.5 Beethoven............................................................................. 3.4.6 Mussorgsky........................................................................... 3.4.7 Debussy ............................................................................... 3.4.8 Polyrhythm........................................................................... 3.4.9 Conclusion of Examples...................................................... 3.5 Conclusion........................................................................................... References....................................................................................................... 15 15 16 18 18 20 21 23 24 25 25 27 28 29 29 29 30 31 ІХ
x 4 5 6 7 Contents Partitions and Musical Sentences............................................................. 4.1 Introduction......................................................................................... 4.2 Integer Partitions................................................................................ 4.2.1 Partitions into к Distinct Parts............................................. 4.2.2 Partitions into Parts with an Arithmetic Progression .... 4.3 Musical Sentences.............................................................................. 4.4 Asymmetric Sentences...................................................................... 4.4.1 Stravinsky’s Game with MetricAsymmetry....................... 4.4.2 Messiaen: The Birds as Teachers of Composition......... 4.5 Measuring Metric Complexity........................................................... 4.6 The Resolution of Musical Sentences: Effects of Closure and Decline......................................................................................... 4.6.1 Shrinking Durations, or the Accelerando Technique .... 4.6.2 Triangular Rhythmic Phrases using Primes..................... 4.7 The Sentence Algorithm in Chunking............................................. 4.7.1 Seven Categoriesof Rhythmic Patterns.............................. 4.7.2 Transcription of Patterns and the CompleteSentence ... 4.8 Conclusion...........................................................................................
References....................................................................................................... The Use of the Burrows-Wheeler Transform for Analysis and Composition........................................................................................... 5.1 Introduction......................................................................................... 5.2 The BWT Algorithm........................................................................... 5.2.1 The Inverse BWT Algorithm (íBWT)............................... 5.2.2 A Rhythm Analysis Program Using the BWT................. 5.2.3 Fragmentation Modelling by Using the iBWT Matrix................................................................. 5.3 Conclusion........................................................................................... References....................................................................................................... 33 33 34 35 36 36 39 39 41 44 46 47 48 49 52 53 54 55 57 57 58 60 61 61 62 63 Christoffel Rhythms.................................................................................... 6.1 Introduction......................................................................................... 6.2 Christoffel Rhythms from Christoffel Words................................... 6.2.1 Operations on Christoffel Rhythms................................... 6.3 The Burrows-Wheeler Transform as a Tool for Rhythm Analysis................................................................................................ 6.4 Rhythms from Various Music
Cultures.......................................... 6.4.1 Euclidean Rhythms............................................................. 6.5 Conclusion...............................................................,.......................... References....................................................................................................... 65 65 66 67 69 71 77 79 80 The Farey Sequence as a Model for Musical Rhythm and Meter....................................................................................................... 7.1 Introduction......................................................................................... 7.2 The Farey Sequence........................................................................... 83 83 84
Contents xi 7.2.1 8 Building Consecutive Ratios Anywhere in Farey Sequences............................................................................. 7.2.2 The Farey Sequence, Amol’d Tongues and the Stem-Brocot Tree................................................. 7.2.3 Farey Sequences and MusicalRhythms.............................. 7.3 Filtered Farey Sequences.................................................................... 7.3.1 Introduction........................................................................... 7.3.2 Polyrhythms........................................................................... 7.3.3 Rhythm Transformations ................................................... 7.3.4 Greek Verse Rhythms ........................................................ 7.3.5 Filters Based onSequencesof Natural Integers................. 7.3.6 Filters Based on the Prime Number Composition of an Integer........................................................................ 7.3.7 Metrical Filters...................................................................... 7.4 Conclusion........................................................................................... References....................................................................................................... 104 107 110 Ill Models of Musical Meter, Temporal Perception and Onset Quantization............................................................................. 8.1 Introduction......................................................................................... 8.2 Musical
Meter.................................................................................... 8.2.1 Necklace Notation of Rhythmand Meter........................... 8.2.2 Meter and Entrainment........................................................ 8.3 Temporal Perception........................................................................... 8.3.1 Shortest Timing Intervals................................................... 8.3.2 The 100 ms Threshold........................................................ 8.3.3 Fastest Beats........................................................................ 8.3.4 Slowest Beats...................................................................... 8.3.5 The Perceptual Time Scale................................................. 8.4 Onset Detection.................................................................................. 8.4.1 Manual Tapping.................................................................... 8.4.2 Onset Data Extracted from AudioSignals......................... 8.4.3 Adjacent Interval Spectrum................................................. 8.4.4 Is Knowledge of Onset TimesSufficient?......................... 8.5 Agogics................................................................................................ 8.6 Gestalt Theory.................................................................................... 8.7 Modelling of Neural Oscillationsfor Musical Meter....................... 8.8 Bayesian Techniques for MeterDetection...................................... 8.9
Quantization......................................................................................... 8.9.1 Grid Quantization................................................................. 8.9.2 Context-Free Grammar........................................................ 8.9.3 Pattern-Based Quantization................................................. 8.9.4 Models Using Bayesian Statistics..................................... 8.9.5 IRCAM’s KANT.................................................................. 113 113 114 115 117 119 120 121 121 122 122 122 122 124 124 126 127 128 131 132 134 134 135 135 136 137 88 88 89 92 92 93 100 100 103
Contents xii 9 8.10 Tempo Tracking.................................................................................. 8.10.1 Multi-agent Systems........................................................... 8.10.2 Probabilistic Methods.......................................................... 8.10.3 Pattem Matching.................................................................. 8.11 Conclusion........................................................................................... References....................................................................................................... 139 139 140 140 141 143 Rhythm Quantization.................................................................................. 9.1 Introduction......................................................................................... 9.2 Grouping of Onsets into DurationClasses....................................... 9.3 Quantization to a Metrical Grid........................................................ 9.4 Some Further Examples of Grouping............................................... 9.5 Quantization of Onsets to a Filtered Farey Sequence................... 9.6 The Transcription Algorithm............................................................. 9.6.1 Analysis Windows ofArbitrary Length............................. 9.7 Experimental Framework.................................................................. 9.7.1 Test Material......................................................................... 9.7.2 Distance Measurements......................................................
9.8 Test Results......................................................................................... 9.8.1 Observations......................................................................... 9.9 Conclusion........................................................................................... 9.9.1 Some Final Thoughts........................................................... References....................................................................................................... 147 147 148 151 155 156 157 157 158 159 159 160 164 171 172 172 Appendix A.......................................................................................................... 175 Index..................................................................................................................... 185
|
any_adam_object | 1 |
author | Bönn, Georg 1965- |
author_GND | (DE-588)134737547 |
author_facet | Bönn, Georg 1965- |
author_role | aut |
author_sort | Bönn, Georg 1965- |
author_variant | g b gb |
building | Verbundindex |
bvnumber | BV046153366 |
ctrlnum | (OCoLC)1059419690 (DE-599)BVBBV046153366 |
dewey-full | 006.4 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.4 |
dewey-search | 006.4 |
dewey-sort | 16.4 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02054nam a2200553zc 4500</leader><controlfield tag="001">BV046153366</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191105 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190910s2018 agl| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319762845</subfield><subfield code="c">Festeinband</subfield><subfield code="9">978-3-319-76284-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1059419690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046153366</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MUS</subfield><subfield code="q">DE-12</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bönn, Georg</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)134737547</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational models of rhythm and meter</subfield><subfield code="c">Georg Boenn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 187 Seiten</subfield><subfield code="b">Illustrationen, Notenbeispiele, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern Recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation and Modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics in Music</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computermusik</subfield><subfield code="0">(DE-588)4113239-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rhythmus</subfield><subfield code="0">(DE-588)4132330-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metrum</subfield><subfield code="0">(DE-588)4169752-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Computermusik</subfield><subfield code="0">(DE-588)4113239-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Rhythmus</subfield><subfield code="0">(DE-588)4132330-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Metrum</subfield><subfield code="0">(DE-588)4169752-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-76285-2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung BSB München - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031533451&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">BSB_NED_20191105</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031533451</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">780.051</subfield><subfield code="e">22/bsb</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">781</subfield><subfield code="e">22/bsb</subfield></datafield></record></collection> |
id | DE-604.BV046153366 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:36:43Z |
institution | BVB |
isbn | 9783319762845 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031533451 |
oclc_num | 1059419690 |
open_access_boolean | |
owner | DE-12 |
owner_facet | DE-12 |
physical | xii, 187 Seiten Illustrationen, Notenbeispiele, Diagramme |
psigel | BSB_NED_20191105 |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Springer |
record_format | marc |
spelling | Bönn, Georg 1965- Verfasser (DE-588)134737547 aut Computational models of rhythm and meter Georg Boenn Cham, Switzerland Springer [2018] © 2018 xii, 187 Seiten Illustrationen, Notenbeispiele, Diagramme txt rdacontent n rdamedia nc rdacarrier Computer Science Pattern Recognition Simulation and Modeling Mathematics in Music Computer science Computer simulation Pattern recognition Mathematics Computermusik (DE-588)4113239-7 gnd rswk-swf Rhythmus (DE-588)4132330-0 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Metrum (DE-588)4169752-2 gnd rswk-swf Computermusik (DE-588)4113239-7 s Rhythmus (DE-588)4132330-0 s Metrum (DE-588)4169752-2 s Algorithmus (DE-588)4001183-5 s DE-604 Erscheint auch als Online-Ausgabe 978-3-319-76285-2 Digitalisierung BSB München - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031533451&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bönn, Georg 1965- Computational models of rhythm and meter Computer Science Pattern Recognition Simulation and Modeling Mathematics in Music Computer science Computer simulation Pattern recognition Mathematics Computermusik (DE-588)4113239-7 gnd Rhythmus (DE-588)4132330-0 gnd Algorithmus (DE-588)4001183-5 gnd Metrum (DE-588)4169752-2 gnd |
subject_GND | (DE-588)4113239-7 (DE-588)4132330-0 (DE-588)4001183-5 (DE-588)4169752-2 |
title | Computational models of rhythm and meter |
title_auth | Computational models of rhythm and meter |
title_exact_search | Computational models of rhythm and meter |
title_full | Computational models of rhythm and meter Georg Boenn |
title_fullStr | Computational models of rhythm and meter Georg Boenn |
title_full_unstemmed | Computational models of rhythm and meter Georg Boenn |
title_short | Computational models of rhythm and meter |
title_sort | computational models of rhythm and meter |
topic | Computer Science Pattern Recognition Simulation and Modeling Mathematics in Music Computer science Computer simulation Pattern recognition Mathematics Computermusik (DE-588)4113239-7 gnd Rhythmus (DE-588)4132330-0 gnd Algorithmus (DE-588)4001183-5 gnd Metrum (DE-588)4169752-2 gnd |
topic_facet | Computer Science Pattern Recognition Simulation and Modeling Mathematics in Music Computer science Computer simulation Pattern recognition Mathematics Computermusik Rhythmus Algorithmus Metrum |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031533451&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bonngeorg computationalmodelsofrhythmandmeter |