Elastic Filaments of the Cell:
Elastic filaments refer mainly to titin, the largest of all known proteins. Titin was discovered initially in muscle cells, where it interconnects the thick filament with the Z-line. Titin forms a molecular spring that is responsible for maintaining the structural integrity of contracting muscle, en...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2000
|
Schriftenreihe: | Advances in Experimental Medicine and Biology
481 |
Schlagworte: | |
Online-Zugang: | UBR01 Volltext |
Zusammenfassung: | Elastic filaments refer mainly to titin, the largest of all known proteins. Titin was discovered initially in muscle cells, where it interconnects the thick filament with the Z-line. Titin forms a molecular spring that is responsible for maintaining the structural integrity of contracting muscle, ensuring efficient muscle contraction. More recently, it has become clear that titin is not restricted to muscle cells alone. For example, titin is found in chromosomes of neurons and also in blood platelets. This topic is fast becoming a focal point for research in understanding viscoelastic properties at the molecular, cellular, and tissue levels. In titin may lie a generic basis for biological viscoelasticity. It has become clear that titin may hold the key to certain clinical anomalies. For example, it is clear that titin-based ventricular stiffness is modulated by calcium and that titin is responsible for the altered stiffness in cardiomyopathies. It is also clear from evidence from a group of Finnish families that titin mutations may underlie some muscular dystrophies and that with other mutations chromatids fail to separate during mitosis. Thus, it is clear that this protein will have important clinical implications stemming from its biomechanical role. One aspect of this field is the bringing together of bioengineers with clinical researchers and biologists. Genetic and biochemical aspects of titin-related proteins are being studied together with front-line engineering approaches designed to measure the mechanics of titin either in small aggregates or in single molecules |
Beschreibung: | 1 Online-Ressource (IX, 425 p) |
ISBN: | 9781461542674 |
DOI: | 10.1007/978-1-4615-4267-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046148639 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 190906s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781461542674 |9 978-1-4615-4267-4 | ||
024 | 7 | |a 10.1007/978-1-4615-4267-4 |2 doi | |
035 | |a (ZDB-2-SBL)978-1-4615-4267-4 | ||
035 | |a (OCoLC)1119014628 | ||
035 | |a (DE-599)BVBBV046148639 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-355 | ||
082 | 0 | |a 572 |2 23 | |
245 | 1 | 0 | |a Elastic Filaments of the Cell |c edited by Henk L. Granzier, Gerald H. Pollack |
264 | 1 | |a Boston, MA |b Springer US |c 2000 | |
300 | |a 1 Online-Ressource (IX, 425 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in Experimental Medicine and Biology |v 481 | |
520 | |a Elastic filaments refer mainly to titin, the largest of all known proteins. Titin was discovered initially in muscle cells, where it interconnects the thick filament with the Z-line. Titin forms a molecular spring that is responsible for maintaining the structural integrity of contracting muscle, ensuring efficient muscle contraction. More recently, it has become clear that titin is not restricted to muscle cells alone. For example, titin is found in chromosomes of neurons and also in blood platelets. This topic is fast becoming a focal point for research in understanding viscoelastic properties at the molecular, cellular, and tissue levels. In titin may lie a generic basis for biological viscoelasticity. It has become clear that titin may hold the key to certain clinical anomalies. For example, it is clear that titin-based ventricular stiffness is modulated by calcium and that titin is responsible for the altered stiffness in cardiomyopathies. It is also clear from evidence from a group of Finnish families that titin mutations may underlie some muscular dystrophies and that with other mutations chromatids fail to separate during mitosis. Thus, it is clear that this protein will have important clinical implications stemming from its biomechanical role. One aspect of this field is the bringing together of bioengineers with clinical researchers and biologists. Genetic and biochemical aspects of titin-related proteins are being studied together with front-line engineering approaches designed to measure the mechanics of titin either in small aggregates or in single molecules | ||
650 | 4 | |a Biochemistry, general | |
650 | 4 | |a Veterinary Medicine/Veterinary Science | |
650 | 4 | |a Biochemistry | |
650 | 4 | |a Veterinary medicine | |
650 | 0 | 7 | |a Filament |0 (DE-588)4195050-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zelle |0 (DE-588)4067537-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Muskelkontraktion |0 (DE-588)4170858-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elastizität |0 (DE-588)4014159-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1999 |z Seattle Wash. |2 gnd-content | |
689 | 0 | 0 | |a Zelle |0 (DE-588)4067537-3 |D s |
689 | 0 | 1 | |a Filament |0 (DE-588)4195050-1 |D s |
689 | 0 | 2 | |a Elastizität |0 (DE-588)4014159-7 |D s |
689 | 0 | 3 | |a Muskelkontraktion |0 (DE-588)4170858-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Granzier, Henk L. |4 edt | |
700 | 1 | |a Pollack, Gerald H. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780306464102 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461369165 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461542681 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-4267-4 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBL | ||
940 | 1 | |q ZDB-2-SBL_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-031528816 | ||
966 | e | |u https://doi.org/10.1007/978-1-4615-4267-4 |l UBR01 |p ZDB-2-SBL |q ZDB-2-SBL_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180489142009856 |
---|---|
any_adam_object | |
author2 | Granzier, Henk L. Pollack, Gerald H. |
author2_role | edt edt |
author2_variant | h l g hl hlg g h p gh ghp |
author_facet | Granzier, Henk L. Pollack, Gerald H. |
building | Verbundindex |
bvnumber | BV046148639 |
collection | ZDB-2-SBL |
ctrlnum | (ZDB-2-SBL)978-1-4615-4267-4 (OCoLC)1119014628 (DE-599)BVBBV046148639 |
dewey-full | 572 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572 |
dewey-search | 572 |
dewey-sort | 3572 |
dewey-tens | 570 - Biology |
discipline | Biologie |
doi_str_mv | 10.1007/978-1-4615-4267-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03774nmm a2200577zcb4500</leader><controlfield tag="001">BV046148639</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190906s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461542674</subfield><subfield code="9">978-1-4615-4267-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-4267-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBL)978-1-4615-4267-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1119014628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046148639</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elastic Filaments of the Cell</subfield><subfield code="c">edited by Henk L. Granzier, Gerald H. Pollack</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 425 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in Experimental Medicine and Biology</subfield><subfield code="v">481</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Elastic filaments refer mainly to titin, the largest of all known proteins. Titin was discovered initially in muscle cells, where it interconnects the thick filament with the Z-line. Titin forms a molecular spring that is responsible for maintaining the structural integrity of contracting muscle, ensuring efficient muscle contraction. More recently, it has become clear that titin is not restricted to muscle cells alone. For example, titin is found in chromosomes of neurons and also in blood platelets. This topic is fast becoming a focal point for research in understanding viscoelastic properties at the molecular, cellular, and tissue levels. In titin may lie a generic basis for biological viscoelasticity. It has become clear that titin may hold the key to certain clinical anomalies. For example, it is clear that titin-based ventricular stiffness is modulated by calcium and that titin is responsible for the altered stiffness in cardiomyopathies. It is also clear from evidence from a group of Finnish families that titin mutations may underlie some muscular dystrophies and that with other mutations chromatids fail to separate during mitosis. Thus, it is clear that this protein will have important clinical implications stemming from its biomechanical role. One aspect of this field is the bringing together of bioengineers with clinical researchers and biologists. Genetic and biochemical aspects of titin-related proteins are being studied together with front-line engineering approaches designed to measure the mechanics of titin either in small aggregates or in single molecules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochemistry, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Veterinary Medicine/Veterinary Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Veterinary medicine</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Filament</subfield><subfield code="0">(DE-588)4195050-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zelle</subfield><subfield code="0">(DE-588)4067537-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Muskelkontraktion</subfield><subfield code="0">(DE-588)4170858-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastizität</subfield><subfield code="0">(DE-588)4014159-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1999</subfield><subfield code="z">Seattle Wash.</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zelle</subfield><subfield code="0">(DE-588)4067537-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Filament</subfield><subfield code="0">(DE-588)4195050-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Elastizität</subfield><subfield code="0">(DE-588)4014159-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Muskelkontraktion</subfield><subfield code="0">(DE-588)4170858-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Granzier, Henk L.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pollack, Gerald H.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780306464102</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461369165</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461542681</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-4267-4</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBL</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBL_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031528816</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-4267-4</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-2-SBL</subfield><subfield code="q">ZDB-2-SBL_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1999 Seattle Wash. gnd-content |
genre_facet | Konferenzschrift 1999 Seattle Wash. |
id | DE-604.BV046148639 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:36:34Z |
institution | BVB |
isbn | 9781461542674 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031528816 |
oclc_num | 1119014628 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (IX, 425 p) |
psigel | ZDB-2-SBL ZDB-2-SBL_2000/2004 ZDB-2-SBL ZDB-2-SBL_2000/2004 |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer US |
record_format | marc |
series2 | Advances in Experimental Medicine and Biology |
spelling | Elastic Filaments of the Cell edited by Henk L. Granzier, Gerald H. Pollack Boston, MA Springer US 2000 1 Online-Ressource (IX, 425 p) txt rdacontent c rdamedia cr rdacarrier Advances in Experimental Medicine and Biology 481 Elastic filaments refer mainly to titin, the largest of all known proteins. Titin was discovered initially in muscle cells, where it interconnects the thick filament with the Z-line. Titin forms a molecular spring that is responsible for maintaining the structural integrity of contracting muscle, ensuring efficient muscle contraction. More recently, it has become clear that titin is not restricted to muscle cells alone. For example, titin is found in chromosomes of neurons and also in blood platelets. This topic is fast becoming a focal point for research in understanding viscoelastic properties at the molecular, cellular, and tissue levels. In titin may lie a generic basis for biological viscoelasticity. It has become clear that titin may hold the key to certain clinical anomalies. For example, it is clear that titin-based ventricular stiffness is modulated by calcium and that titin is responsible for the altered stiffness in cardiomyopathies. It is also clear from evidence from a group of Finnish families that titin mutations may underlie some muscular dystrophies and that with other mutations chromatids fail to separate during mitosis. Thus, it is clear that this protein will have important clinical implications stemming from its biomechanical role. One aspect of this field is the bringing together of bioengineers with clinical researchers and biologists. Genetic and biochemical aspects of titin-related proteins are being studied together with front-line engineering approaches designed to measure the mechanics of titin either in small aggregates or in single molecules Biochemistry, general Veterinary Medicine/Veterinary Science Biochemistry Veterinary medicine Filament (DE-588)4195050-1 gnd rswk-swf Zelle (DE-588)4067537-3 gnd rswk-swf Muskelkontraktion (DE-588)4170858-1 gnd rswk-swf Elastizität (DE-588)4014159-7 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 1999 Seattle Wash. gnd-content Zelle (DE-588)4067537-3 s Filament (DE-588)4195050-1 s Elastizität (DE-588)4014159-7 s Muskelkontraktion (DE-588)4170858-1 s DE-604 Granzier, Henk L. edt Pollack, Gerald H. edt Erscheint auch als Druck-Ausgabe 9780306464102 Erscheint auch als Druck-Ausgabe 9781461369165 Erscheint auch als Druck-Ausgabe 9781461542681 https://doi.org/10.1007/978-1-4615-4267-4 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Elastic Filaments of the Cell Biochemistry, general Veterinary Medicine/Veterinary Science Biochemistry Veterinary medicine Filament (DE-588)4195050-1 gnd Zelle (DE-588)4067537-3 gnd Muskelkontraktion (DE-588)4170858-1 gnd Elastizität (DE-588)4014159-7 gnd |
subject_GND | (DE-588)4195050-1 (DE-588)4067537-3 (DE-588)4170858-1 (DE-588)4014159-7 (DE-588)1071861417 |
title | Elastic Filaments of the Cell |
title_auth | Elastic Filaments of the Cell |
title_exact_search | Elastic Filaments of the Cell |
title_full | Elastic Filaments of the Cell edited by Henk L. Granzier, Gerald H. Pollack |
title_fullStr | Elastic Filaments of the Cell edited by Henk L. Granzier, Gerald H. Pollack |
title_full_unstemmed | Elastic Filaments of the Cell edited by Henk L. Granzier, Gerald H. Pollack |
title_short | Elastic Filaments of the Cell |
title_sort | elastic filaments of the cell |
topic | Biochemistry, general Veterinary Medicine/Veterinary Science Biochemistry Veterinary medicine Filament (DE-588)4195050-1 gnd Zelle (DE-588)4067537-3 gnd Muskelkontraktion (DE-588)4170858-1 gnd Elastizität (DE-588)4014159-7 gnd |
topic_facet | Biochemistry, general Veterinary Medicine/Veterinary Science Biochemistry Veterinary medicine Filament Zelle Muskelkontraktion Elastizität Konferenzschrift 1999 Seattle Wash. |
url | https://doi.org/10.1007/978-1-4615-4267-4 |
work_keys_str_mv | AT granzierhenkl elasticfilamentsofthecell AT pollackgeraldh elasticfilamentsofthecell |