Quantum physics: states, observables and their time evolution
This is an introductory graduate course on quantum mechanics, which is presented in its general form by stressing the operator approach. Representations of the algebra of the harmonic oscillator and of the algebra of angular momentum are determined in chapters 1 and 2 respectively. The algebra of an...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer
[2019]
|
Schlagworte: | |
Zusammenfassung: | This is an introductory graduate course on quantum mechanics, which is presented in its general form by stressing the operator approach. Representations of the algebra of the harmonic oscillator and of the algebra of angular momentum are determined in chapters 1 and 2 respectively. The algebra of angular momentum is enlarged by adding the position operator so that the algebra can be used to describe rigid and non-rigid rotating molecules. The combination of quantum physical systems using direct-product spaces is discussed in chapter 3. The theory is used to describe a vibrating rotator, and the theoretical predictions are then compared with data for a vibrating and rotating diatomic molecule. The formalism of first- and second-order non-degenerate perturbation theory and first-order degenerate perturbation theory are derived in chapter 4. Time development is described in chapter 5 using either the Schroedinger equation of motion or the Heisenberg’s one. An elementary mathematical tutorial forms a useful appendix for the readers who don’t have prior knowledge of the general mathematical structure of quantum mechanics |
Beschreibung: | ix, 353 Seiten Illustrationen, Diagramme |
ISBN: | 9789402417586 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046130096 | ||
003 | DE-604 | ||
005 | 20201208 | ||
007 | t | ||
008 | 190828s2019 a||| |||| 00||| eng d | ||
020 | |a 9789402417586 |9 978-94-024-1758-6 | ||
035 | |a (OCoLC)1129399617 | ||
035 | |a (DE-599)BVBBV046130096 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-20 | ||
084 | |a UK 1000 |0 (DE-625)145785: |2 rvk | ||
100 | 1 | |a Bohm, Arno |d 1936- |e Verfasser |0 (DE-588)134274091 |4 aut | |
245 | 1 | 0 | |a Quantum physics |b states, observables and their time evolution |c Arno Bohm, Piotr Kielanowski, G. Bruce Mainland |
264 | 1 | |a Dordrecht |b Springer |c [2019] | |
300 | |a ix, 353 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | |a This is an introductory graduate course on quantum mechanics, which is presented in its general form by stressing the operator approach. Representations of the algebra of the harmonic oscillator and of the algebra of angular momentum are determined in chapters 1 and 2 respectively. The algebra of angular momentum is enlarged by adding the position operator so that the algebra can be used to describe rigid and non-rigid rotating molecules. The combination of quantum physical systems using direct-product spaces is discussed in chapter 3. The theory is used to describe a vibrating rotator, and the theoretical predictions are then compared with data for a vibrating and rotating diatomic molecule. The formalism of first- and second-order non-degenerate perturbation theory and first-order degenerate perturbation theory are derived in chapter 4. Time development is described in chapter 5 using either the Schroedinger equation of motion or the Heisenberg’s one. An elementary mathematical tutorial forms a useful appendix for the readers who don’t have prior knowledge of the general mathematical structure of quantum mechanics | ||
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Physics | |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
653 | |a Hardcover, Softcover / Physik, Astronomie/Theoretische Physik | ||
689 | 0 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kielanowski, Piotr |d 1944- |e Verfasser |0 (DE-588)1089836848 |4 aut | |
700 | 1 | |a Mainland, G. Bruce |e Verfasser |0 (DE-588)1201497353 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-94-024-1760-9 |
999 | |a oai:aleph.bib-bvb.de:BVB01-031510495 |
Datensatz im Suchindex
_version_ | 1804180453130764288 |
---|---|
any_adam_object | |
author | Bohm, Arno 1936- Kielanowski, Piotr 1944- Mainland, G. Bruce |
author_GND | (DE-588)134274091 (DE-588)1089836848 (DE-588)1201497353 |
author_facet | Bohm, Arno 1936- Kielanowski, Piotr 1944- Mainland, G. Bruce |
author_role | aut aut aut |
author_sort | Bohm, Arno 1936- |
author_variant | a b ab p k pk g b m gb gbm |
building | Verbundindex |
bvnumber | BV046130096 |
classification_rvk | UK 1000 |
ctrlnum | (OCoLC)1129399617 (DE-599)BVBBV046130096 |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02638nam a2200445 c 4500</leader><controlfield tag="001">BV046130096</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201208 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190828s2019 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789402417586</subfield><subfield code="9">978-94-024-1758-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1129399617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046130096</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1000</subfield><subfield code="0">(DE-625)145785:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bohm, Arno</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)134274091</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum physics</subfield><subfield code="b">states, observables and their time evolution</subfield><subfield code="c">Arno Bohm, Piotr Kielanowski, G. Bruce Mainland</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ix, 353 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is an introductory graduate course on quantum mechanics, which is presented in its general form by stressing the operator approach. Representations of the algebra of the harmonic oscillator and of the algebra of angular momentum are determined in chapters 1 and 2 respectively. The algebra of angular momentum is enlarged by adding the position operator so that the algebra can be used to describe rigid and non-rigid rotating molecules. The combination of quantum physical systems using direct-product spaces is discussed in chapter 3. The theory is used to describe a vibrating rotator, and the theoretical predictions are then compared with data for a vibrating and rotating diatomic molecule. The formalism of first- and second-order non-degenerate perturbation theory and first-order degenerate perturbation theory are derived in chapter 4. Time development is described in chapter 5 using either the Schroedinger equation of motion or the Heisenberg’s one. An elementary mathematical tutorial forms a useful appendix for the readers who don’t have prior knowledge of the general mathematical structure of quantum mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Physik, Astronomie/Theoretische Physik</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kielanowski, Piotr</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1089836848</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mainland, G. Bruce</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1201497353</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-94-024-1760-9</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031510495</subfield></datafield></record></collection> |
id | DE-604.BV046130096 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:36:00Z |
institution | BVB |
isbn | 9789402417586 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031510495 |
oclc_num | 1129399617 |
open_access_boolean | |
owner | DE-29T DE-20 |
owner_facet | DE-29T DE-20 |
physical | ix, 353 Seiten Illustrationen, Diagramme |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Springer |
record_format | marc |
spelling | Bohm, Arno 1936- Verfasser (DE-588)134274091 aut Quantum physics states, observables and their time evolution Arno Bohm, Piotr Kielanowski, G. Bruce Mainland Dordrecht Springer [2019] ix, 353 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier This is an introductory graduate course on quantum mechanics, which is presented in its general form by stressing the operator approach. Representations of the algebra of the harmonic oscillator and of the algebra of angular momentum are determined in chapters 1 and 2 respectively. The algebra of angular momentum is enlarged by adding the position operator so that the algebra can be used to describe rigid and non-rigid rotating molecules. The combination of quantum physical systems using direct-product spaces is discussed in chapter 3. The theory is used to describe a vibrating rotator, and the theoretical predictions are then compared with data for a vibrating and rotating diatomic molecule. The formalism of first- and second-order non-degenerate perturbation theory and first-order degenerate perturbation theory are derived in chapter 4. Time development is described in chapter 5 using either the Schroedinger equation of motion or the Heisenberg’s one. An elementary mathematical tutorial forms a useful appendix for the readers who don’t have prior knowledge of the general mathematical structure of quantum mechanics bicssc bisacsh Quantum theory Mathematical physics Physics Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Hardcover, Softcover / Physik, Astronomie/Theoretische Physik Quantenmechanik (DE-588)4047989-4 s DE-604 Kielanowski, Piotr 1944- Verfasser (DE-588)1089836848 aut Mainland, G. Bruce Verfasser (DE-588)1201497353 aut Erscheint auch als Online-Ausgabe 978-94-024-1760-9 |
spellingShingle | Bohm, Arno 1936- Kielanowski, Piotr 1944- Mainland, G. Bruce Quantum physics states, observables and their time evolution bicssc bisacsh Quantum theory Mathematical physics Physics Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4047989-4 |
title | Quantum physics states, observables and their time evolution |
title_auth | Quantum physics states, observables and their time evolution |
title_exact_search | Quantum physics states, observables and their time evolution |
title_full | Quantum physics states, observables and their time evolution Arno Bohm, Piotr Kielanowski, G. Bruce Mainland |
title_fullStr | Quantum physics states, observables and their time evolution Arno Bohm, Piotr Kielanowski, G. Bruce Mainland |
title_full_unstemmed | Quantum physics states, observables and their time evolution Arno Bohm, Piotr Kielanowski, G. Bruce Mainland |
title_short | Quantum physics |
title_sort | quantum physics states observables and their time evolution |
title_sub | states, observables and their time evolution |
topic | bicssc bisacsh Quantum theory Mathematical physics Physics Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | bicssc bisacsh Quantum theory Mathematical physics Physics Quantenmechanik |
work_keys_str_mv | AT bohmarno quantumphysicsstatesobservablesandtheirtimeevolution AT kielanowskipiotr quantumphysicsstatesobservablesandtheirtimeevolution AT mainlandgbruce quantumphysicsstatesobservablesandtheirtimeevolution |